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Preface

The condensed matter consists of enormous number of interacting electrons together
with neutralizing positive ions. As a consequence, there emerges an abundant variety
of phenomena in condensed matter. Some of these can be understood in terms
of single-electron picture that replaces the inter-electron Coulomb interaction by
its average, or by a classical mean field. Realistic description of energy bands in
simple metals and semiconductors is one of the most successful examples of the
mean field theory. Other phenomena, however, require treatment that goes beyond
the classical mean field scheme. Examples of the latter include high-temperature
superconductivity, heavy electrons, and fractional quantum Hall effect.

The main purpose of this book is to provide a compact tutorial for basic concepts
and tools of quantum many-particle physics, which focuses on correlation effects
caused by mutual interactions. The book tries to explain important concepts in depth
for serious reading. Since the quantum many-particle physics has expanded to a
large complex, it may be most important for a textbook to select the material for
learning in a reasonable span of time, a year or so.

The book has grown out of my lectures on condensed matter theory mainly
delivered in the graduate school of Tohoku University, Sendai, Japan. The original
version of the book was published in Japanese. In writing this English version,
I have made substantial revision, adding new topics and improving descriptions.
The readership is assumed to be of late undergraduate level and graduate level.
The book intends to be useful also for those who have already learned condensed
matter physics, but try to acquire coherent image of the quantum many-particle
systems. Within a compact size, the book intends to let the reader acquire not
only the fundamental concepts but also useful theoretical tools of many-particle
physics. The description makes minimum use of technically sophisticated setup.
Although the concept of Green functions appear in the early stage (Chap. 3), it is not
linked with perturbation expansion with the use of Feynman diagrams. The reader
can proceed until the second last chapter without encountering the full-fledged
field-theoretical formalism combined with Feynman diagrams. Instead the book
uses mostly a more intuitive (younger) cousin, called Goldstone diagram, which
is faithful to each perturbation process. I thus hope that the book is more accessible

v



vi Preface

to the readership with the background of experimental physics. The book touches
on some recent topics such as room-temperature superconductivity at high pressure
so that the reader can feel the atmosphere of the research frontier. Most materials,
however, are selected for their importance in longer time span.

In each topic, concise but self-contained account is provided so that the reader
need not refer to other textbooks and original papers. In particular, I explain in
detail those items which may well arouse confusion during learning. Such items
are selected according to the experience of my own confusion, and secondly of
the graduate students around me. The following two concepts thread through most
topics discussed in the book. The first is the renormalization which guides our
attention to relevant energy range by successive elimination of high-energy states.
The second is the quasi-particle, by which one concentrates on excitations from the
ground state as a collection of smaller number of virtual particles. Both concepts
are essential for extracting manageable degrees of freedom out of a huge number
inherent in many-particle systems.

The content of the book is roughly classified into three parts. The first part
provides a review of basic theoretical concepts and tools. In order to learn the
quantum many-particle physics, it is indispensable to have reasonable knowledge
of both quantum mechanics and statistical physics. The first part is designed to
review the basics of these subjects in the course of reading. As a start, the first
chapter deals with perturbation theory. The treatment also aims at concise review of
elementary quantum mechanics. We reformulate the perturbation theory in such a
manner that evolves into the renormalization theory. As specific examples, we take
hydrogen and oxygen molecules, and discuss their spin and orbital states. In Chap. 2,
we discuss basic properties of electrons in solids. Under the periodic potential, a
single electron itinerate on many atomic sites by forming the energy band. However,
with Coulomb interactions among electrons, each electron may localize spatially by
losing its itinerant character. In order to deal with many particles, we need statistical
physics as an indispensable tool. Among various subjects in statistical physics,
Chap. 3 discusses the linear response theory, which is heavily used in the rest of
the book.

In the second part, we deal basically with mean field treatment of itinerant
electrons. As the simplest framework that can deal with their interaction effects, the
Fermi liquid theory is outlined in Chap. 4. It is known that the Fermi liquid theory
becomes exact in the limit of low excitation energies, in spite of its approximate
nature as a mean field theory. We proceed in Chap. 5 to superconductivity. Since
a lot of textbooks and monographs are already available about superconductivity,
we try to make least duplication with these books. Hence, we focus on the effect
of Coulomb repulsion among electrons and ensuing structure of Cooper pairs. The
emphasis on this aspect reflects our hope to promote better understanding of high-
temperature superconductivity in cuprates and iron pnictides, both of which are
subject of recent active research. On the other hand, the hydride superconductors
with transition temperatures near 300 K are briefly mentioned in the context of the
isotope effect.
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In the third part, we discuss quantum fluctuation effects beyond the mean
field picture. The conflict between itinerant and localized characters of interacting
electrons leads to interesting physical phenomena. In most cases, these proper-
ties can be fully understood only by going beyond the mean field treatment.
Chapter 6 discusses Kondo effect due to magnetic impurities in a metal. The
renormalization effect appears most dramatically in this problem. We proceed
then to low-dimensional systems, where fluctuation effects are essential. Chapter 7
explains a powerful method called bosonization which provides exact solution for
certain models such as the Tomonaga–Luttinger model and the Kondo model with
special value of interaction parameters. In Chap. 8, we first explain one-particle
physics such as Aharonov–Bohm and Berry phases, and proceed to Laughlin states
in two dimensions. The interaction effects appear there as exotic statistics which
are neither Fermi nor Bose. We then discuss a one-dimensional model which we
can solve exactly and obtain free quasi-particles with exotic statistics. Chapter 9
deals concisely with many-body perturbation theory with the use of path integral
formalism. The diagram method invented by Feynman is the most convenient in
systematic perturbation analysis to infinite order. Then in the final part, Chap. 10
deals with the dynamical effective field theory which becomes exact in the limit of
large number of neighboring sites, as in large spatial dimensions. Interestingly, the
high-dimensional limit connects to the zero-dimensional one which is nothing but
an impurity system. Hence, Kondo effect emerges again as an essential ingredient
in systems in large dimensions.

To use the book as a lecture material, only the first and second parts may
be selected depending on the situation, since the content after Chap. 6 is more
advanced. We assume the second-quantization method as known by the reader. We
use the natural units with h̄ = c = kB = 1 except for cases stated otherwise,
as in estimating numerical values in conventional unit systems. Each chapter has
problems and their solutions to help in the understanding of the reader. Some
problems with asterisk (*) are more advanced. It is advised that the reader tries
to solve the problem before reading the solution.

Since the description of the book is mostly self-contained, the number of
references is limited to a minimum. The list refers to original papers on the subject,
however old they may be, together with a few of comprehensive reviews and
monographs. I find it more useful for beginners to combine the original work and
good reviews in a concise manner, rather than to give the exhaustive list. In addition,
the book does not try to be encyclopedic. Let us make explicit some important
topics that we do not discuss. First to mention is the topological insulator and
related topics. Since topological aspect of the electronic structure is primarily of
single-electron property, we just refer to a good textbook for the topic.1 We do
discuss, however, elementary topological concepts such as the winding number and
the Berry phase in the context of many-particle physics. Other omissions include

1A recent textbook on the subject: D. Vanderbilt, Berry Phases in Electronic Structure Theory,
(Cambridge University Press, 2018).
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quantum spin systems such as Kitaev spin liquid,2 quantum phase transitions,3

disordered systems,4 and nonequilibrium systems such as optical lattices.5 The
selection of advanced topics in the book obviously reflects my own taste and limited
competence.

Finally, I would thank many people in various generations who have kindly
helped me to acquire my viewpoint on physics. The first occasion for me to study
seriously the physics around Kondo effect was in Germany many years ago. I owe
very much to E. Müller-Hartmann, J. Zittartz, D. Wohlleben (deceased), and F.
Steglich for introducing me to the field. My further education on the subject owes
mainly to working for original results with my colleagues and previous students,
including J. Akimitsu, M. Arikawa, N. Fukushima, H. Harima, C. Horie, S. Hoshino,
K.-I. Imura, T. Inoshita, K. Itakura, K. Iwasa, R. Kadono, T. Kasuya, Y. Kato,
N. Kawakami, C.-I. Kim. A. Kiss, H. Kojima, H. Kono, K. Kubo, T. Kuromaru,
H. Kusunose, S.W. Lovesey, S. Mao, K. Miyake, Y. Murakami, O. Narayan, K.
Nomura, J. Otsuki, S. Ozaki, R. Peters, Y. Saiga, O. Sakai, A. Sakuma, G. Sakurai,
H.J. Schmidt, T. Seki, N. Shibata, Y. Shimizu, S. Suzuki, G. Uimin, S. Watanabe,
T. Watanabe, A. Yamakage, T. Yamamoto, S. Yamazaki, H. Yokoyama, and many
others to whom I would express my sincere gratitude. Lastly, I thank the editors
of the book for their constructive criticism which has motivated me to upgrade the
content substantially from translation of the Japanese edition.

Yoshio Kuramoto

2 An example of a recent monograph on related subject: T.D. Stanescu, Introduction to Topological
Quantum Matter & Quantum Computation, (CRC Press, 2017).
3 A representative monograph on the subject: S. Sachdev, Quantum Phase Transitions, Second
Edition, (Cambridge University Press, 2011).
4 A collection of review papers: 50 Years of Anderson Localization, edited by E. Abrahams (World
Scientific, 2010).
5 An example of the monograph: M. Lewenstein, A. Sanpera, and V. Ahufinger, Ultracold Atoms
in Optical Lattices: Simulating quantum many-body systems, (Oxford University Press, 2012).
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Chapter 1
Perturbation Theory and Effective
Hamiltonian

Abstract Perturbation theory is one of the standard subjects in elementary quantum
mechanics. The connection to renormalization emerges naturally if one adopts a
generalized view on perturbation theory. While the ordinary perturbation theory
derives approximate eigenenergy and the corresponding eigenfunction, the gener-
alized view derives an operator called the effective Hamiltonian. In this chapter we
reformulate the perturbation theory by introducing the concept of model space. As
a simple application of the effective Hamiltonian, we discuss the spin structure of
hydrogen and oxygen molecules.

1.1 Projection onto Model Space

When considering physical phenomena, it is seldom that all energy ranges are
relevant. In most cases, information on limited range of energy is sufficient. For
example, the specific heat at low temperature is determined only by excitation
spectra extending up to the energy range corresponding to the temperature. In such
cases, instead of dealing with all states in the Hamiltonian, we may focus only at
low-energy states. The effective Hamiltonian serves precisely for such purpose.

Let us start with the Schrödinger equation Hψ = Eψ, with eigenfunction ψ for
the whole system. The model space is defined so that eigenfunctions in the model
space have the same eigenenergies as those of original states within a specified
energy range. The fundamental requirement for the effective Hamiltonian Heff in
the model space is that each eigenvalue E is reproduced within the restricted energy
range. Namely, introducing the projection operator P onto the model space, we
require

HeffPψ = EPψ, (1.1)

which defines Heff. It is possible to derive Heff explicitly (at the formal level). For
this purpose we split the Hamiltonian as H = H0 + V where the unperturbed part
H0 can be diagonalized within the model space, which means [H0, P ] = 0. We
introduce another projection operator Q so that the relation P + Q = 1 holds.
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2 1 Perturbation Theory and Effective Hamiltonian

Fig. 1.1 Projection of the
eigenfunction ψ to the model
space P and its
complementary space Q. The
wave operator Ω restores ψ
from Pψ

ψ

Pψ

Qψ

P

Q

Ω

Namely, the states projected by Q are orthogonal to those in the model space. We
may then rewrite the Schrödinger equation as

(E − H0)Qψ = QVψ, (1.2)

where we have used the relation [H0,Q] = 0.
Next we introduce an operator Ω which is called the wave operator [1]. As

illustrated in Fig. 1.1, Ω recovers the original eigenstate ψ by operating on a state
Pψ in the model space. As is clear from Fig. 1.1, there are apparently infinite
number of different states that give the same Pψ , provided Qψ is arbitrary.
However, the condition that ψ is an eigenfunction of H makes the strong constraint
on Qψ , which leads to the recovery of ψ by Ω .

From the definition of the wave operator Ω , we obtain the relation

ΩPψ = Pψ + Qψ = Pψ + (E − H0)
−1QVψ, (1.3)

where the last term in the rightmost side results from eliminating Qψ with use of
Eq. (1.2). We substitute ψ = Pψ + Qψ in the last term, and eliminate Qψ using
Eq. (1.2) again. Repeating this process, we arrive at the closed form of Ω as

Ω(E) =
∞∑

n=0

[
(E − H0)

−1QV
]n
. (1.4)

Thus the effective Hamiltonian is obtained in the power series as

Heff(E) = PHΩ(E)P, (1.5)

with use of P 2 = P .
Note that Heff(E) contains the exact energy E, which is to be obtained as the

eigenvalue. This characteristic becomes most obvious in the simplest case where
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the model space consists of a single state |0〉. Namely, we obtain the condition to
determine Heff(E) = E as

E = 〈0|H0 + V |0〉 + 〈0|V (E − H0)
−1QV |0〉 + . . . , (1.6)

which is different from the more familiar framework, called the Rayleigh–
Schrödinger perturbation theory, where the right-hand side (RHS) would have
the unperturbed energy E0 instead of E.

An advantage of the present framework, often called the Brillouin–Wigner
perturbation theory, is demonstrated by a simple example where the second-order
perturbation theory gives the exact result. Let us take a single-particle system with
energy levels ε0 and ε1, which are connected by the matrix element V . Using the
creation (c†

i ) and annihilation (ci) operators for each level i = 0, 1, the Hamiltonian
is written as

H = ε0c
†
0c0 + ε1c

†
1c1 + V

(
c

†
0c1 + c

†
1c0

)
. (1.7)

The diagonalization of the Hamiltonian gives the energy levels as

E± = 1

2
(ε0 + ε1) ±

√
1

4
(ε1 − ε0)2 + V 2. (1.8)

Amazingly, these eigenenergies are reproduced by the Brillouin–Wigner perturba-
tion theory in the lowest order. The confirmation is the subject of Problem 1.1.

1.2 Rearrangement of Perturbation Series

In many cases other than those demonstrated above, it is more convenient to deal
with the effective Hamiltonian which does not involve the unknown energy to be
derived. The goal is achieved by adopting the Rayleigh–Schrödinger perturbation
theory to the formalism of effective Hamiltonians [1]. We start from the Schrödinger
equation in the form

(E − H0)ψ = Eψ − H0ΩPψ = VΩPψ, (1.9)

where we have used the property ΩPψ = ψ for an eigenstate ψ of the operator
H0 + V . We apply the operator product ΩP from the left of Eq. (1.9) to obtain

Ω(E − H0)Pψ = Eψ − ΩH0Pψ = ΩPVΩPψ, (1.10)

using the relation PH0 = H0P . Subtraction of Eq. (1.10) from Eq. (1.9) gives

[Ω,H0]Pψ = (1 − ΩP)VΩPψ. (1.11)
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We now expand the wave operator as Ω = Ω0 +Ω1 +Ω2 + . . . where Ωn is O(V n)

and Ω0 = 1. By comparing the terms with the same order in V in both sides of
Eq. (1.11), we obtain

[Ωn,H0] = QVΩn−1 −
n−1∑

j=1

ΩjPVΩn−j−1. (1.12)

Using this result iteratively, the n-th order term Ωn can be derived successively from
lower order ones. Furthermore, using the relation Hn = PVΩn−1P , we obtain the
expansion Heff = P(H0 +V )P +H2 +H3 + . . . explicitly. Examples of lower order
terms are given by

〈a|H2|b〉 = 〈a|V (εb − H0)
−1QV |b〉, (1.13)

〈a|H3|b〉 = 〈a|V 1

εb − H0
QV

1

εb − H0
QV |b〉

−
∑

c

〈a|V 1

εb − H0

1

εc − H0
QV |c〉〈c|V |b〉, (1.14)

where states such as |a〉, |b〉, |c〉 all belong to the model space. Equation (1.13)
is familiar in the elementary quantum mechanics as the perturbation theory for
degenerate levels. In H3, the first term in the RHS of Eq. (1.14) takes the same form
as in the Brillouin–Wigner framework except for the energy denominator, while the
second term is specific to the Rayleigh–Schrödinger framework.

1.3 Hydrogen Molecule

Before discussing complicated behavior of electrons in solids, it is useful to consider
the electronic state in a molecule. Let us first take the simplest model for the
hydrogen molecule H2. This example demonstrates the usefulness of the effective
Hamiltonian approach.

The energy levels of excited states such as 2s, 2p are lying much higher than the
low-lying states of our interest. Hence we focus only on wave functions of 1s sates.
When two hydrogen atoms come close, it becomes possible for 1s electrons to go
from one proton to the other. Taking account of this hopping effect by the parameter
t , we consider the following model:

H = −t
∑

σ

(
c

†
1σ c2σ + c

†
2σ c1σ

)
+ U

(
n1↑n1↓ + n2↑n2↓

)
, (1.15)

where c
†
iσ is the creation operator of the 1s electron with spin σ , which is bound to

a proton specified by i = 1, 2. Each proton is assumed to be fixed at its respective
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position, which is called the site. The configuration (1s)2 around each proton has
the extra energy U associated with the Coulomb repulsion between the electrons.
We take t > 0 for the transfer energy, and take the 1s level as the origin of energy.

This model of H2 corresponds to the two-site version of the Hubbard model
[2–4], which will be explained in Chap. 2 in more detail. The two-site model can
be solved exactly for arbitrary magnitude of U . However, in order to obtain clear
physical image, we consider two limits t � U and 0 < t � U separately. If we
have U = 0, the eigenstate consists of the antisymmetrized product of one-electron
states, each of which has the eigenenergy ±t . The wave function with energy −t is
called the bonding orbital since the charge density tends to accumulate in the center
of protons, while the other wave function with energy t is called the anti-bonding
orbital since the charge density is zero in the center. Both are examples of molecular
orbitals, which have been used most popularly in chemistry [5]. If two electrons
have different spin states, the Pauli exclusion principle allows both electrons to enter
bonding orbitals. The resultant ground state has energy −2t and spin 0 (singlet). The
effect of Coulomb repulsion is negligible as long as U � t.

In the opposite limit of t = 0, the electronic state is reduced to that of two
hydrogen atoms. Then the ground state has the four-fold spin degeneracy, which is
broken by even tiny t 	= 0. The resultant energy gain with the singlet state causes
bonding of the two atoms to hydrogen molecule. It is amazing that essentially
the same idea was already put forward by Heitler and London [6] in the primary
stage of quantum mechanics. We take the effective Hamiltonian approach which is
convenient for discussing the spin configuration. With t regarded as the perturbation
parameter and the model space taken as (1s)1 at each site, we construct the effective
Hamiltonian in the second order in t . Among the four combinations up and down
spins, only the singlet pair of electrons has intermediate states where either of
hydrogen atoms has two electrons. Figure 1.2 represents pictorially the perturbation
process corresponding to Eq. (1.13). This is the simplest example of Goldstone
diagrams [1, 7].

i

j
j

i

−t −t −t −t

(a) (b)

Fig. 1.2 Examples of second-order perturbation processes by t . In (a), the 1s electron bound to
the proton site i hops virtually to the other site j and comes back to i, while (b) shows the exchange
of 1s electrons at i and j
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On the other hand, the triplet pair does not have a configuration with two
electrons per hydrogen atom, hence no shift in the second-order energy. Thus the
effective Hamiltonian is given by

Heff = J

(
S1 · S2 − 1

4

)
, (1.16)

with J = 4t2/U . Since we have J > 0, the ground state is the spin singlet with
energy −J . This is because only the singlet can take the intermediate state (1s)2

without violating the Pauli principle. Hence it gains the second-order perturbation
energy. Problem 1.3 deals with a more complicated case of oxygen molecule, which
may also help to derive Eq. (1.16).

As we have seen, the contrasting limiting pictures called molecular orbital and
Heitler–London both give the spin-singlet ground state. Since it is possible to solve
this simple model for arbitrary value of U/t , we can see how these limiting states
are connected to each other. The ground state energy E0 is exactly derived as

E0 = 1

2
U −

√
1

4
U2 + 4t2. (1.17)

The derivation is the subject of Problem 1.2. The limiting values at U/t → 0,∞
are given, respectively, by −2t,−4t2/U . Namely, the molecular orbital and Heitler–
London pictures are connected continuously. In the case of a crystalline solid, the
former goes over to the itinerant picture, while the latter (Heitler–London) goes over
to the localized picture. In contrast with the molecule system, however, the smooth
connection between the two limiting states is not guaranteed because of collective
interaction effects.

1.4 Oxygen Molecule

The oxygen molecule O2 has spin 1, and is paramagnetic. This section clarifies the
origin in terms of a simplified model. A neutral oxygen atom has the electronic
configuration (2p)4. This is interpreted as having two holes in the 2p orbitals. We
take the axial direction of the diatomic molecule along the z axis. Then the anti-
bonding orbital 2pz has a hole per oxygen, namely two holes per O2. The remaining
hole at each oxygen atom enters into either 2px or 2py orbital. These orbitals extend
perpendicularly to the bonding axis, and are energetically degenerate, which are
illustrated in Fig. 1.3.
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Fig. 1.3 Illustration of 2p
hole wave functions in O2.
Either of 2px, 2py orbitals
has a hole per oxygen atom

2pz

2px

2py

In order to discuss the paramagnetism of O2, we focus on holes in 2px, 2py

orbitals with the spin degrees of freedom remaining. We take the following model:

H = −t
∑

ασ

(
p

†
1ασp2ασ + p

†
2ασp1ασ

)
+ H

(1)
int + H

(2)
int , (1.18)

H
(i)
int = U

∑

α

niα↑niα↓ + U ′nixniy − JH

(
Six · Siy + 3

4
nixniy

)
, (1.19)

where α (= x, y) distinguishes two kinds of 2p orbitals, and p
†
iασ (piασ ) represents

the hole creation (annihilation) operator at site i (= 1, 2), orbital α, and spin σ .
The corresponding spin and number operators are given by Siα and niα (or niασ
for a spin component), respectively. The Coulomb repulsion is given by U for two
holes in the same orbital, and U ′ (< U) for those in different orbitals. The positive
parameter JH represents the Hund’s rule which favors parallel spins for two holes in
different orbitals 2px, 2py . Note that the axial symmetry of the molecule allows the
hopping −t only between the same kind of orbitals.

Assuming U > U ′ � t > 0, we derive energies of all (=16) eigenstates. Use of
the pseudo-spin τ for orbital degrees of freedom simplifies the calculation. Namely,
using the vector σ composed of the Pauli matrices, we define the pseudo-spin for a
site i

τ i = 1

2

∑

αβ

∑

ρ

p
†
iαρσαβpiβρ,

and the total pseudo-spin Lτ ≡ τ 1 + τ 2 of the molecule. Then by analogy with the
case of two spins, we can represent the 2×2 = 4 orbital states in terms of the orbital
singlet Lτ = 0 and the orbital triplet Lτ = 1 with three states.
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Let us introduce the orbital projection operators as follows:

P(Lτ = 0) = −τ 1 · τ 2 + 1

4
, P

(
Lz
τ = ±1

) = 2τ z1 τ
z
2 + 1

2
,

P
(
Lτ = 1, Lz

τ = 0
) = τ 1 · τ 2 − 2τ z1 τ

z
2 + 1

4
.

Note that the sum of these three operators gives the identity operator. Using
analogous projection operators for spin degrees of freedom, we obtain the effective
Hamiltonian:

Heff = − 4t2

U ′ − JH
P
(
S = 1, Lτ = 0

)− 4t2

U
P(S = 0, Lz

τ = ±1)

− 4t2

U ′ P
(
S = 0, Lτ = 1, Lz

τ = 0
)
. (1.20)

The derivation of energy of each spin and orbital configuration is the subject of
Problem 1.3 with the solution given by Eq. (1.28). Each projection operator onto a
given configuration (S, Lτ ) is the product of spin and orbital projection operators.
An example is given by

P(S = 1, Lτ = 0) =
(

S1 · S2 + 3

4

)(
−τ 1 · τ 2 + 1

4

)
. (1.21)

Then Heff in Eq. (1.20) is written in terms of the product of spin and orbital operators
involving two sites. According to Eq. (1.20), the two orbital states with Lτ = 1
favor the singlet state of spins. On the other hand, the orbitals singlet (Lτ = 0)
favor paramagnetism (S = 1) by the effect of JH.

Replacing the oxygen pair by a pair of transition metal ions in the crystal, Heff
in Eq. (1.20) can be applied to systems such as a perovskite LaMnO3 which has
orbitally degenerate electrons in the 3d shell [8]. The 3d orbital has the five-fold
orbital degeneracy under the rotational symmetry, but is split to two levels with
three- and two-fold degeneracies under the cubic symmetry. With further lowering
of the symmetry, it may happen that the orbital degeneracy disappears completely. If
the energy gain by this lowering is more than the loss of the elastic energy, the crystal
deforms spontaneously. This is called the cooperative Jahn–Teller effect. The name
comes from the work of Jahn and Teller who discussed the distortion of molecules
with orbital degeneracy [9]. Thus, consideration of orbital degrees of freedom is
necessary for understanding rich phenomena of magnetic ordering in perovskites
and other transition metal systems.
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1.5 Itinerant vs. Localized Limits in a Molecule

The picture of molecular orbitals is connected to the energy band picture for
electrons in crystals, while the Heitler–London picture has more similarity to
localized electron picture in solids. We have seen in H2 molecule that the spin-
singlet state changes continuously from the one limit to the other. We now consider
the fate of the paramagnetic (S 	= 0) ground state as the transfer t grows. In this
connection we mention the sulfur molecule, S2, where each S atom has (3p)4

configuration. Because the 3p orbital is more extended than the 2p orbital of
oxygen, t/U in S2 is larger than that in O2. It is known that the S2 molecule is
also paramagnetic with spin 1.

Let us start with the extreme case t � U,U ′, JH > 0 in the model given by
Eq. (1.18). It is legitimate to keep only the bonding orbitals of a hole with energy
−t . With two holes in these orbitals, the Pauli principle allows either S = 1, Lτ =
0 or S = 0, Lτ = 1. Hence in the non-interacting limit the ground state is six-
fold degenerate. With finite interactions JH, the degenerate energy level splits into
different spin states with S = 1 and S = 0. The latter with Lτ = 1 splits in general
further into levels with Lz

τ = ±1 and with Lz
τ = 0 because of the different Coulomb

repulsions U and U ′. Absence of the SU(2) symmetry for pseudo-spins allows the
difference. The shift of each energy level by interactions is summarized as

ΔE
(
S = 0, Lz

τ = ±1
) = U

2
, ΔE

(
S = 0, Lτ = 1, Lz

τ = 0
) = U ′

2
,

ΔE(S = 1, Lτ = 0) = U ′

2
− JH. (1.22)

Namely, the ground state in the weak-coupling limit has spin triplet and orbital
singlet (S = 1, Lτ = 0), which has the same quantum numbers as those of the
ground state in the localized limit.

If one hypothetically increases the number of atoms in a molecule, the sys-
tem connects to a crystalline solid. Then the state with finite spin connects to
ferromagnetism, which can change continuously from the itinerant to localized
limits. These examples suggest important role of the orbital degeneracy to realize
ferromagnetism.

Problems

1.1 Derive the effective Hamiltonian for the ground state of Eq. (1.7), and its
eigenvalue.

1.2 Diagonalize the pair Hamiltonian H2 given by Eq. (1.15), and derive the exact
ground state energy given by Eq. (1.17).
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1.3 Derive the energy of a hole pair in Eq. (1.18) by performing second-order
perturbation expansion with respect to t .

Solutions to Problems

Problem 1.1
The model space P is chosen as |0〉〈0|. With only the single state involved,
the effective Hamiltonian is a scalar with energy E. According to Eq. (1.4), the
perturbation series terminates at O(V 2), resulting in

〈0|Heff|0〉 = ε0 + V 2

E − ε1
= E. (1.23)

This quadratic equation for E has two solutions:

E = 1

2
(ε0 + ε1) ±

√
1

4
(ε1 − ε0)2 + V 2. (1.24)

By continuity with vanishing V , we should choose the solution with minus sign.
The result agrees with the exact ground state energy derived by diagonalization of
the 2 × 2 Hamiltonian matrix. Note that the other solution with the plus sign in
Eq. (1.24) tends to ε1 with vanishing V . The latter solution gives the exact energy
of the excited state, which belongs to the orthogonal space |1〉〈1| projected by Q.

Problem 1.2
We construct the two-electron states |1〉, |2〉, |3〉 with spin 0 by the product of spin
states | ↑〉 and | ↓〉 at each site as

|1〉 = | ↑↓〉 ⊗ |0〉, |2〉 = |0〉 ⊗ | ↑↓〉, (1.25)

|3〉 = 1√
2
(| ↑〉 ⊗ | ↓〉 − | ↓〉 ⊗ | ↑〉) . (1.26)

Since the charge distribution of |3〉 is symmetric about the center of two sites,
the hopping t mixes |3〉 only with another symmetric state defined by |4〉 =
(|1〉 + |2〉) /√2. Therefore with the basis set |3〉 and |4〉, the two-site Hamiltonian
for the spin singlet is represented by a 2 × 2 matrix as

(
0 −2t

−2t U

)
. (1.27)

The lower eigenvalue the matrix corresponds to the result given by Eq. (1.17).
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Problem 1.3
The Pauli exclusion principle decides whether two holes can enter the same site.
Hence according to the spin and orbital quantum numbers, the two-hole intermediate
state has the energy specified by U,U ′, JH . The Pauli principle also demands
different parities between the orbital and spin exchanges, which guarantees the
antisymmetry of the wave function. As a result, states with S = 1, Lτ = 1 or with
S = 0, Lτ = 0 are forbidden. For example, the Coulomb repulsion is U in the case
of Lz

τ = ±1, while it is U ′ with Lτ = 1, Lz
τ = 0 since two holes are in different

orbitals. Note that there is no rotational symmetry in the pseudo-spin space.
Figure 1.2 in p.5 illustrates the second-order perturbation processes by t , also in

the presence of orbital degeneracy. With the help of these figures, the energy Epair
of a hole pair is derived as

Epair =
⎧
⎨

⎩

−4t2/(U ′ − JH ), (S = 1, Lτ = 0)
−4t2/U, (S = 0, Lτ = 1, Lz

τ = 1)
−4t2/U ′, (S = 0, Lτ = 1, Lz

τ = 0)
, (1.28)

where the factor 4 in front of t2 accounts for equivalent hopping processes from j

to i. From Eq. (1.28), we conclude that the most favorable state for the interaction
energy is the spin triplet configuration with (S = 1, Lτ = 0).
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Chapter 2
Itinerant and Localized Characters
of Electrons

Abstract Crystalline solids are composed of a huge number (∼1023) of electrons
and nuclei, which make up quantum many-body systems with rich properties. For
intuitive understanding of the electronic property of actual solids, it is necessary to
extract only essential ingredients out of a large number of degrees of freedom. In
this chapter we take a simplified model where positively charged ions form a simple
lattice. We discuss basic effects of kinetic energy of electrons, potential energy from
ions, and mutual Coulomb interaction energy among electrons. Special attention is
paid how the attractive and repulsive Coulomb interactions from ions and other
electrons combine to work on each electron. Depending on relative importance of
kinetic and mutual interaction energies, electrons take either itinerant states forming
energy bands, or localized states around each ion. The discussion in this chapter is
restricted to absolute zero of temperature.

2.1 Model of Electrons in Solids

Crystalline solids consist of many electrons and nuclei with opposite charges. In this
Chapter we focus only on electrons in solids, and neglect all dynamics of positive
ions for simplicity. Namely, we assume unit point charge for each of positive ions
that are fixed at lattice sites Ri (i = 1, 2, · · · , N) with N � 1. The number of
electrons is also taken to be N so that the system is neutral as a whole. The operators
Ψ †
σ (r) and Ψσ (r), respectively, represent creation and annihilation of electrons at

position r with spin σ . Then with v(r) = e2/|r|, the Hamiltonian is given by

H =
∑

σ

∫
drΨ †

σ (r)

[
− Δ

2m
−
∑

i

v(r − Ri )

]
Ψσ (r) + VC + VI, (2.1)

© Springer Japan KK, part of Springer Nature 2020
Y. Kuramoto, Quantum Many-Body Physics, Lecture Notes in Physics 934,
https://doi.org/10.1007/978-4-431-55393-9_2

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-4-431-55393-9_2&domain=pdf
https://doi.org/10.1007/978-4-431-55393-9_2


14 2 Itinerant and Localized Characters of Electrons

ρ(x) ρ(x)

x x
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ρ(x)

aa a

Fig. 2.1 Illustration of the density ρ(x) of electrons in a one-dimensional lattice for (i) a < aB
and (ii) a > aB

where Δ is the Laplacian and VC represents the Coulomb repulsion among electrons,
while VI among ionic charges. They are explicitly written as

VC = 1

2

∫
dr

∫
dr ′∑

σ,σ ′
v(r − r ′)Ψ †

σ (r)Ψ
†
σ ′(r ′)Ψσ ′(r ′)Ψσ (r), (2.2)

VI = 1

2

∑

i 	=j

v(Ri − Rj ). (2.3)

The wave function of an electron bound to an ion has the extension of the order
of aB = 1/(me2) ∼ 0.5 Å, which is called the Bohr radius. Figure 2.1 illustrates
the density profile of electrons in one-dimensional lattice with the lattice parameter
a being either small or large as compared with aB. Although most of actual solids
have comparable values for a and aB, it is instructive to consider the limiting cases
such as (i) a � aB, and (ii) a � aB.

2.2 Formation of Energy Bands

Let us first consider the case (i) a � aB. The wave functions of nearby sites are
overlapping strongly. As a result, the ground state wave function deviates much
from collection of the atomic 1s orbitals, and mixing with excited orbitals such as
2s and 2p becomes substantial. The wave function of the crystal may even be closer
to a plane wave rather than atomic orbitals if the kinetic energy dominates over the
periodic potential.

In such a case, the interaction energy VC is mostly determined by the average
〈nσ (r)nσ ′(r ′)〉, but is less influenced by 〈δnσ (r)δnσ ′(r ′)〉 where

δnσ (r) = Ψ †
σ (r)Ψσ (r) − 〈Ψ †

σ (r)Ψσ (r)〉
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represents the density fluctuation operator. The neglect of fluctuation contribution
corresponds to the approximation

Ψ †
σ (r)Ψ

†
σ ′(r ′)Ψσ ′(r ′)Ψσ (r)

⇒ nσ (r)〈nσ ′(r ′)〉 + 〈nσ (r)〉nσ ′(r ′) − 〈nσ (r)〉〈nσ ′(r ′)〉, (2.4)

which amounts to replacing the inter-electron interaction by an effective potential
felt by each electron. This scheme is called the Hartree approximation. The effective
potential is an example of the molecular field. We shall later explain an improved
approximation that takes account of another contribution, called the exchange term,
in addition to Eq. (2.4).

In the Hartree approximation, the original Hamiltonian H is replaced by

HH =
∫

dr
∑

σ

Ψ †
σ (r)hH(r)Ψσ (r) + ED, (2.5)

where ED ≡ NεD is the constant term given by

εD = 1

2N

∑

i 	=j

v(Ri−Rj )− 1

2N

∫
dr

∫
dr ′v(r−r ′)

∑

σ,σ ′
〈nσ (r)〉〈nσ ′(r ′)〉. (2.6)

In the thermodynamic limit N → ∞, each term in Eq. (2.6) is divergent because
of the long range of the 1/r interactions. However, the sum εD converges to a finite
value. This is because the ionic repulsion given by the first term in the RHS cancels
with the second term owing to the charge neutrality. The origin of the second term
with the negative sign becomes clear in the following discussion of hH(r).

The motion of each electron is controlled by the one-body Hamiltonian

hH(r) = − Δ

2m
+ vH(r), (2.7)

where the Hartree potential vH(r) is given by

vH(r) =
∫

dr ′v(r − r ′)

⎡

⎣
∑

σ

〈nσ (r ′)〉 −
∑

j

δ(r ′ − Rj )

⎤

⎦ . (2.8)

The first term in the square bracket originates from the repulsive interaction in
VC, while the second term represents the attractive potential provided by positive
ions. The potential vH(r) becomes finite only by combination of both terms, each
of which is divergent in the thermodynamic limit as in the case of εD. Note that
VC is counted twice in the integral of Eq. (2.8), which is corrected by the final
term in Eq. (2.6) with negative sign. Provided the charge density has the periodicity
〈nσ (r ′ + R)〉 = 〈nσ (r ′)〉 for any lattice vector R, the Hartree potential also has the
same periodicity: vH(r + R) = vH(r).
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The one-body Schrödinger equation is given by

hH(r)φn(r) = Enφn(r), (2.9)

where the eigenvalue En is indexed as E1, E2, . . . from lower to higher energies.
For definiteness, we take the cubic shape of the system with each edge length L,
and impose the periodic boundary condition along each direction. Strictly speaking,
we have to modify the Coulomb interaction in the periodic form as well. However,
we use the original form e2/r assuming L is much larger than the characteristic
length which determines the property of the system. Since vH(r) has the crystalline
periodicity, each eigenfunction φn is given as a Bloch state characterized by the
wave number k in the Brillouin zone. As we shall show below, the N -body state in
fact satisfies the assumed periodicity in 〈nσ (r ′)〉.

With use of the complete set {φn}, the field operator Ψσ (r) of electrons is
expanded as

Ψσ (r) =
∑

n

cnσ φn(r), (2.10)

where cnσ is the annihilation operator of the corresponding state. In the Hartree
approximation, the N -particle ground state |g〉 is constructed by starting from the
vacuum |0〉 and filling the electronic states successively from the lowest level:

|g〉 =
∏

σ

N/2∏

n=1

c†
nσ |0〉. (2.11)

Here we have assumed N even. In the first-quantized notation, the state |g〉 is
described by a Slater determinant. With the coordinates r i for spin up electrons
and r ′

i for spin down ones with i = 1, 2, . . . ,M ≡ N/2, we obtain

〈r1 . . . rM ; r ′
1 . . . r

′
M |g〉 ≡ Ψg(r1 . . . rM ; r ′

1 . . . r
′
M)

= 1

M!

∣∣∣∣∣∣∣

φ1(r1) · · · φ1(rM)
...

. . .
...

φM(r1) · · · φM(rM)

∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣

φ1(r
′
1) · · · φ1(r

′
M)

...
. . .

...

φM(r ′
1) · · · φM(r ′

M)

∣∣∣∣∣∣∣
. (2.12)

From the antisymmetry of the determinant against exchange of two columns, the
wave function vanishes with r i = rj or r ′

i = r ′
j , while it can remain with r i = r ′

j .
This property corresponds to the Pauli exclusion principle.

The electronic density is the same for both spin directions σ , and is given by

〈nσ (r ′)〉 =
M∑

n=1

|φn(r ′)|2, (2.13)
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where |φn(r ′)|2 has the crystalline periodicity, and depends obviously on the Hartree
potential vH(r). On the other hand, Eq. (2.8) shows that vH(r) in turn is specified by
〈nσ (r ′)〉. Specifically, if 〈nσ (r ′)〉 has the crystalline periodicity, the same applies to
vH(r). Namely, the density and vH(r) are determined self-consistently.

In the ground state of N electrons, they occupy the one-electron states with
energies E1, E2, . . . , EN/2, each of which is doubly degenerate by spin degrees
of freedom. If the lowest energy band has no overlap with other energy bands, this
lowest band is half-filled by N electrons, since each band can accommodates up
to 2N electrons. The set of k, which has the highest energy of the occupied states,
forms the Fermi surface. The volume VF surrounded by the Fermi surface is related
to the electron density n = N/L3 as

VF /(2π)
3 = n/2. (2.14)

The Hartree approximation successfully gives a finite self-consistent potential
in the simplest manner. However, it has a defect that becomes serious if one looks
more carefully into quantum mechanical nature of electrons. Namely, vH is finite
even for N = 1, which means a self-interaction in contradiction with the basic
principle of quantum mechanics. Although crystalline solids have N � 1, the self-
interaction spoils the accuracy especially for low density of electrons. The defect of
self-interaction can be remedied by including the other terms (called exchange) in
approximating VC:

Ψ †
σ (r)Ψ

†
σ ′(r ′)Ψσ ′(r ′)Ψσ (r)⇒ (direct terms) − 〈Ψ †

σ (r)Ψσ ′(r ′)〉Ψ †
σ ′(r ′)Ψσ (r)

− Ψ †
σ (r)Ψσ ′(r ′)〈Ψ †

σ ′(r ′)Ψσ (r)〉 + 〈Ψ †
σ (r)Ψσ ′(r ′)〉〈Ψ †

σ ′(r ′)Ψσ (r)〉, (2.15)

where “direct terms” means those in the RHS of Eq. (2.4). Note that the aver-
ages in Eq. (2.15) are taken over non-local quantities with different coordinates.
The framework to consider the exchange terms as well is called the Hartree–
Fock approximation. The Hartree–Fock approximation can deal with magnetically
ordered states. Namely, the effective potential may depend on spins through the
spin-dependent exchange term 〈Ψ †

σ ′(r ′)Ψσ (r)〉. In an ordered state, the effective
potential can break the crystalline symmetry spontaneously. The framework with a
broken symmetry is often called the unrestricted Hartree–Fock approximation.

In the Hartree–Fock approximation, the effective single-electron Hamiltonian is
represented by

HHF =
∫

dr

∫
dr ′∑

σ,σ ′
Ψ †
σ (r)hσσ ′(r, r ′)Ψσ ′(r ′) + EDX, (2.16)

where the constant term EDX is given by

EDX = ED+ 1

2

∫
dr

∫
dr ′v(r−r ′)

∑

σ,σ ′
〈Ψ †

σ ′(r ′)Ψσ (r)〉〈Ψ †
σ (r)Ψσ ′(r ′)〉. (2.17)
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The effective potential, with exchange terms included, acts not only on the density
operator nσ (r) but also on the non-local part. Therefore, the one-body Hamiltonian
hσσ ′(r, r ′) also becomes non-local. Explicitly, we obtain

hσσ ′(r, r ′) = hH(r)δσ,σ ′δ(r − r ′) − v(r − r ′)〈Ψ †
σ ′(r ′)Ψσ (r)〉. (2.18)

The resultant the Schrödinger equation is given by

Enσφn(r, σ ) =
∫

dr ′∑

σ ′
hσσ ′(r, r ′)φn(r ′, σ ′)

= hH(r)φn(r) −
∫

dr ′∑

σ ′
v(r − r ′)〈Ψ †

σ ′(r ′)Ψσ (r)〉φn(r ′, σ ′),

(2.19)

which is a complicated integro-differential equation. In the case of small number of
electrons, the exchange compensates partially the Hartree potential that has been
overestimated. The inspection is the subject of Problem 2.1. The Hartree–Fock
approximation can also describe a magnetically ordered state with spin-dependent
average in Eq. (2.18). For real materials, however, it requires a lot of computational
resource to derive the non-local average self-consistently. Hence it is usual to
employ a local approximation for the exchange terms to make the calculation
feasible. In deriving energy bands of actual solids, most calculations use the so-
called density functional theory [1], combined with the local approximation. We
refer to recent reviews [2, 3] and an extensive monograph [4] for highly sophisticated
details of practical calculation.

Without symmetry breaking, the eigenfunction φn(r, σ ) of HHF is a Bloch
function. Then the N -electron ground state is described by the Slater determinant
as in the case of the Hartree approximation. It often happens that self-consistent
solutions are not unique. For example, a solution corresponding to the paramagnetic
state exists even though the magnetic state is more stable. It is necessary in such
a case to examine the change of energy against variation of the solution. Even if
the stationary solution gives the local minimum against infinitesimal variation, it is
possible that other solution gives the global minimum of the energy.

With a � aB, the magnitude of average interaction energy among electrons
becomes much smaller than the band width. Then the picture of almost free (non-
interacting) Bloch electrons emerges as the zero-th order approximation. Here the
difference between the Hartree and Hartree–Fock approximation is small. However,
it does not exclude the importance of fluctuation effects due to the mutual interac-
tion. Since the excitation energy in the metallic state has no gap, perturbation theory
with a vanishing energy denominator may encounter divergence. In one spatial
dimension, the divergence commonly occurs even in the lowest-order perturbation
theory. As a result, the starting ground state in the Hartree–Fock approximation
becomes unstable. Another case with important fluctuation effects is the system
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where an impurity spin is screened out by the surrounding conduction electrons,
which is known as Kondo effect. These fluctuation effects will be discussed in later
Chapters.

With increasing interactions in any dimension, the ground state may have ordered
phases such as magnetic or superconducting states. If there is no symmetry breaking,
the size of the Fermi surface is independent of the strength of interaction, and
remains the same as given by Eq. (2.14) [5]. This situation is described by the Fermi-
liquid theory as explained in more detail later.

2.3 Localized Orbitals and Hopping of Electrons

In the case (ii) a � aB, we start from the atomic picture of the ground state in
which each electron is in the 1s orbital, and the influence from other sites is a
small perturbation. In this case the ground state should be insulating. According
to Mott [6], such insulating state can be found in actual materials, although the
electronic state is much more complicated than the hydrogen lattice. In the energy
band picture, the insulating state needs either even number of electrons per unit cell,
or a symmetry breaking order so that the new unit cell contains even number of
electrons. In reality, certain materials such as CoO, with odd electron number per
unit cell, remains insulating even above the Neél temperature. On the other hand,
systems such as V2O3 change into a metal from the antiferromagnetic insulator if
one applies pressure, or replaces constituent atoms to cause equivalent chemical
pressure. The class of such systems is often called Mott insulators [6, 12].

We inspect how to deal with the case of a � aB more systematically. If we start
from the paramagnetic ground state, the many-electron wave function given by the
Slater determinant of Bloch states has substantial probability of both up- and down-
spin electrons present in each 1s orbital. However, with a � aB, the energy loss by
the double occupation should be much larger than the gain by forming Bloch states.
Hence there should be either up or down spin but not both at each site.

The Hartree approximation cannot deal with the situation properly because
vH (r) cannot distinguish spins. The exchange potential, on the other hand, cancels
most of the direct Coulomb interaction from nearby electrons with the same spin.
As a result the Hartree–Fock Hamiltonian reproduces the limit of weakly coupled
hydrogens as long as the spin is completely polarized. Therefore we consider
artificially the situation where all electrons have spin up [7]. This observation
enables us to define the basis functions which are necessary to establish the
localized picture. Suppose we have solved the Hartree–Fock equation assuming a
fully polarized ground state. Then the lowest energy band is full, which consists
dominantly of the 1s state at each site. The next lowest bands separated by the
energy gap consist of 2s and 2p states. In the case of a � aB, the gap should be
about 0.75 Ryd, which is the difference between the 1s and 2s, 2p states. From the
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Bloch functions ψk(r) of the lowest band we construct the Wannier function by [7]

wi(r) = 1√
N

∑

k

ψk(r) exp(−ik · Ri ) (2.20)

which is similar to the 1s wave function at site Ri . In contrast to the atomic
wave function, however, the Wannier functions constitute an orthogonal set. The
annihilation operator ciσ corresponding to this Wannier state is defined with use of
the field operator Ψσ (r) by

ciσ =
∫

drw∗
i (r)Ψσ (r). (2.21)

The eigenenergy Ek of the first band is Fourier transformed to give

tij = 1√
N

∑

k

Ek exp[ik · (Ri − Rj )]. (2.22)

Here the diagonal element tii ≡ εa represents the 1s level with a possible shift, and
tij with i 	= j is the hopping energy between the sites i, j . Explicitly, tij is given by

tij =
∫

dr

∫
dr ′w∗

i (r)h↑↑(r, r ′)wj (r
′). (2.23)

We are now ready to represent the original Hamiltonian given by Eq. (2.1) in
terms of the Wannier basis, which has the form analogous to the tight-binding
approximation. Since we are interested in the ground state and low-lying excitations,
we consider the subspace consisting of 1s states given by Eq. (2.20), but with
arbitrary spin configurations. We introduce a projection operator P1s to this
subspace, and obtain

P1sHP1s =H1 + H2 + EDX, (2.24)

H1 =
∑

iσ

εac
†
iσ ciσ +

∑

i 	=j,σ

t̃
(σ )
ij c

†
iσ cjσ , (2.25)

H2 =1

2

∑

ij lm

∑

σσ ′
〈ij |v|ml〉c†

iσ c
†
jσ ′cmσ ′clσ , (2.26)

where the matrix element of the Coulomb interaction is given by

〈ij |v|ml〉 =
∫

dr

∫
dr ′v(r − r ′)w∗

i (r)w
∗
j (r

′)wm(r
′)wl(r). (2.27)
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Note that we use the ordering convention of basis in the bra as defined by 〈ij | =
|ji〉† throughout the book. The transfer t̃ (σ )ij may be different from the one given by
Eq. (2.23) since the latter is defined for the fully polarized state. In the Hartree–Fock
approximation, we obtain

t̃
(σ )
ij = tij +

∑

mσ ′
(〈im|v|mj 〉δnmσ ′ − 〈im|v|jm〉δnmσ δσσ ′) , (2.28)

where δnmσ ′ denotes the deviation of the occupation number from the fully
polarized state. For qualitative argument, we identify t̃

(σ )
ij with tij , neglecting the

dependence on spin polarization.
Since wi(r) is localized around Ri , most of 〈ij |v|ml〉 is short-ranged for different

sites. However, terms of the type 〈ij |v|ji〉 remain significant even for a pair of
distant sites i and j . This type is called the Coulomb integral and is responsible
for charge fluctuations like the plasma oscillation. Another important contribution
comes from the type 〈ij |v|ij 〉 for neighboring sites. The matrix element is called
the exchange integral, which acts in favor of parallel arrangement of spins at
neighboring sites.

In order to go beyond the mean field approximation, we take the drastic
approximation. Namely, among 〈ij |v|ml〉 in Eq. (2.27), only the largest term is kept
with i = j = l = m. Then we obtain

H2 → U
∑

i

(ni↑ni↓ − ni↑ − ni↓) ≡ HU − UNe, (2.29)

where U = 〈ii|v|ii〉, and niσ = c
†
iσ ciσ . The model H1 + HU is often called the

Hubbard model [8–10]. Namely, we define HHub as

HHub =
∑

iσ

εac
†
iσ ciσ +

∑

i 	=j,σ

tij c
†
iσ cjσ + U

∑

i

ni↑ni↓. (2.30)

The electron number Ne can be different from the number N of the lattice sites.
In real systems, the difference is caused by doping, or by reservoir bands which
are neglected in the model. The fully polarized Hartree–Fock state becomes an
eigenstate of the Hubbard model. However, this ferromagnetic state should have
higher kinetic energy than that of paramagnetic and antiferromagnetic states. In
one dimension, for example, the ground state does not have a spin polarization
according to available exact solution [11]. Moreover, the ground state is insulating
if the occupation number of electrons is unity per site. This paramagnetic insulating
state is consistent with the picture proposed by Mott [6].

Let us return to more general forms of the Coulomb interaction than in Eq. (2.29).
The simplest way to see the effect of each term in Eqs. (2.25) and (2.26) on the spin
configuration is to take N = 2, which makes possible the analogy with the hydrogen
molecule. In the two-body interaction H2, we keep U ≡ 〈11|v|11〉, K ≡ 〈12|v|21〉,
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Jd ≡ 〈12|v|12〉 and equivalent ones, all of which are positive. In this case exact
solution of H1 +H2 is easily obtained. Since the total spin is conserved, we classify
the states into spin triplet (S = 1) and singlet (S = 0). The three triplet states have
the energy Et = 2εa + K − Jd . Among the three singlet states, the lowest one has
the energy

Es = 2εa + K + Jd + U−/2 −
(
U2−/4 + 4t2

)1/2
, (2.31)

with t ≡ t12 and U− ≡ U − K − Jd . The result can be derived by analogy with the
simpler case of Eq. (1.17). The derivation is the subject of Problem 2.2. The double
occupation of a site tends to zero in the limit a � aB. In this limit U is much larger
than |t |, Jd , and K . Then we may expand the square root in Eq. (2.31) to first order
in t2. It is convenient to use the projection operators Ps and Pt to the singlet and
triplet pairs as given by

Ps = 1

4
− S1 · S2, Pt = 3

4
+ S1 · S2. (2.32)

The effective Hamiltonian describing these states is then given by

Heff = EsPs + EtPt = Et + (Es − Et)Ps

∼ 2εa + K − Jd +
(

4t2

U−
− 2Jd

)(
S1 · S2 − 1

4

)
, (2.33)

which can also be derived by perturbation theory in t as in Eq. (1.28). The coefficient
of the spin-dependent term forms the effective exchange interaction. Two competing
effects are present; the part with the transfer t is called the superexchange interaction
which favors the singlet pair. This is because the doubly occupied site can occur
as the intermediate state by perturbation in terms of t . On the other hand, the
Coulombic exchange Jd favors the triplet pair. This gain of energy originates from
the Pauli principle which discourages the overlap of wave functions with the same
spin. Depending on the parameters in the system, either of them can dominate over
the other.

In the Heitler–London theory for the bonding of hydrogen molecule, the stability
of the singlet state is interpreted in terms of Coulomb attraction due to accumulated
electrons in between the protons. The stabilization by the kinetic exchange repre-
sents the same accumulation effect in different terms. In the case of general N , the
competing exchange mechanisms described above are also present. Since Jd should
decay faster than t2

12 as a/aB increases, the kinetic exchange wins in the case (ii).
As a result, antiferromagnetism has more chance to be realized for larger a/aB than
ferromagnetism. If the average occupation number per site is less than unity, it is
possible for electrons to propagate by using empty sites, thus avoiding the large
Coulomb repulsion associated with the double occupation. Hence working with the
model space without double occupation of any site, one often uses the following
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effective Hamiltonian:

HtJ = Ht + J
∑

〈ij 〉

(
Si · Sj − 1

4
ninj

)
, (2.34)

which is called the t-J model [12]. Here Ht takes the same form as in the Hubbard
model, except that it works in the subspace without the double occupation. The
exchange term gives −J if the nearest-neighbor sites 〈ij 〉 are occupied by the singlet
pair, and becomes zero otherwise. The number operator ni for the site i takes either
0 or 1. The t-J model is regarded as the effective model for the Hubbard model if
J = 4t2/U � t . However, t and J are usually treated as independent parameters
in the t-J model.

2.4 Density of States of Electrons

The density of states ρ(ε) of electrons plays a fundamental role in determining
the property of the system, as will be discussed in later chapters. Let us derive
the explicit form of ρ(ε) for representative lattices, restricting to non-interacting
electrons [13]. The Fourier transform of tij gives the spectrum εk as

εk = 1√
N

∑

i

tij exp[−ik · (Ri − Rj )], (2.35)

where N corresponds to the number of lattice sites Ri . The density of states per spin
and per unit cell is given by

ρ(ε) = 1

N

∑

k

δ(ε − εk). (2.36)

For convenience we introduce the quantity G(z) defined by

G(z) = 1

N

∑

k

1

ε − εk

, (2.37)

with z being complex energy. We defer discussion of the detailed meaning of G(z)

to Sect. 3.7. Here it is sufficient to recognize that G(z) is analytic function of z with
a cut along the real axis. The density of states ρ(ε) is obtained by

ρ(ε) = − 1

π
ImG(ε + i0+), (2.38)

with 0+ positive infinitesimal.
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We begin with the one-dimensional system with only the nearest-neighbor
hopping t , and the lattice constant a. The spectrum is given by

εk = 2t cos(ka). (2.39)

We introduce the notation D1 ≡ 2|t | to represent the maximum of εk . It is easy
to derive ρ(ε) = ρ1(ε) analytically in this case. Introducing the complex variable
ζ = exp(iφ) with φ = ka, we obtain the expression

G(z) =
∫ 2π

0

dφ

2π

1

z − 2t cosφ
= −

∮

C

dζ

2π i

2

ζ 2 − ζz/t + 1
, (2.40)

where the integration path C is the unit circle in the complex plane of ζ . The
denominator vanishes at ζ = x ± √

x2 − 1 with x = z/(2t). In the case of x2 > 1,
the path C encloses a single pole at ζ− = x − √

x2 − 1. Evaluating the residue, we
obtain

G(z) =
(
z2 − D2

1

)−1/2
, (2.41)

which tends to 1/z if |z|/D1 � 1. The branch of the square root should be chosen
to reproduce the correct asymptotic behavior and the analyticity of G(z), which is
regular except on the real axis. The resultant expression is valid for arbitrary value
of z, including the cut z ∈ [−D1,D1]. Thus we obtain

ρ1(ε) = θ
(
D2

1 − ε2
)

π

√
D2

1 − ε2
, (2.42)

which is divergent at band edges. The inverse square-root divergence at the lower
edge has the same feature as the free particle with the spectrum εk ∝ k2. Figure 2.2a
illustrates ρ1(ε).

Fig. 2.2 Density of states for (a) the one-dimensional lattice, and (b) the square lattice
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We next consider the the square lattice where the spectrum is given by

εk = 2t
[
cos(kxa) + cos(kya)

]
, (2.43)

with the energy range |εk| ≤ D2 ≡ 4|t |. Although much more complicated than
in the previous case, it is possible to obtain the density of states ρ2(ε) analytically,
which is the subject of Problem 3.7. The result is given by

ρ2(ε) = 2

π2D2
θ
(
D2

2 − ε2
)
K(

√
1 − (ε/D2)2), (2.44)

where K(z) is the complete elliptic integral of the first kind, as defined by

K(z) =
∫ π/2

0
dθ

1√
1 − z2 sin2 θ

. (2.45)

Figure 2.2b illustrates ρ2(ε), which has the logarithmic divergence at ε = 0, and
discontinuity at ε = ±D2. The origin of the divergence is the degeneracy εk = 0
along the lines kx ± ky = ±π/a. The discontinuity at ε = −D2 shares the same
feature as that of the free particle with the spectrum εk ∝ k2

x + k2
y .

We turn to the simple cubic lattice where the spectrum is given by

εk = 2t
[
cos(kxa) + cos(kya) + cos(kza)

]
, (2.46)

with the energy range |εk| ≤ 6|t | ≡ D3. The numerical result for the density of
states ρ3(ε) is shown in Fig. 2.3. The square-root rise from ε/D3 = −1 is common
with that of the free particle with the spectrum εk ∝ k2

x + k2
y + k2

z . The cusps
at ε/D3 = ±1/3 correspond to the van Hove singularity [14], which arises if the
spectrum becomes locally flat around certain k in the Brillouin zone. In the present
case, we obtain ∂εk/∂k = 0 at kia = 0, π for i = x, y, z. The energy becomes
εk = ±D3/3 at these points.

Fig. 2.3 Density of states
ρ3(ε) for the simple cubic
lattice with the
nearest-neighbor hopping
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Problems

2.1 A single electron does not interact with itself. Show that this feature is not
respected in the Hartree approximation, but is indeed realized in the Hartree–Fock
approximation.

2.2 Derive the ground state energy given by Eq. (2.31) for the two-site system.

2.3∗ Derive the density of states for the square lattice as given by Eq. (2.44).

Solutions to Problems

Problem 2.1
The interaction term in the Hartree–Fock Hamiltonian (2.16) has the following
operator part:

Ψ
†
1 Ψ2

〈
Ψ

†
3 Ψ4

〉
− Ψ

†
1 Ψ4

〈
Ψ

†
3 Ψ2

〉
, (2.47)

where Ψi is the abbreviated form for the faithful expression Ψσ (r). The first term
in Eq. (2.47) corresponds to the Hartree term, and the second one to the exchange
(Fock) term. We shall show that these terms combine to give vanishing average
for a single-electron system. The Hartree term alone leads to a finite value, which
is unreasonable for a single electron because the electron should not interact with
itself.

Let φ(r, σ ) be the wave function of a single-electron state |1〉. Then with the
vacuum state |0〉, we obtain 〈0|Ψ1|1〉 = φ(r1, σ1) by definition. The average of the
first term in Eq. (2.47) is written as

〈
Ψ

†
1 Ψ2

〉 〈
Ψ

†
3 Ψ4

〉
= φ(r1, σ1)

∗φ(r2, σ2)φ(r3, σ3)
∗φ(r4, σ4). (2.48)

The average of the second term is given by the interchange of suffices 2 and 4,
which results in the same expression as Eq. (2.48) with opposite sign. Hence we
obtain EDX = 0 in Eq. (2.17).

Problem 2.2
The two-site system has the Coulomb interaction H2 as given by

H2 = U

2∑

i=1

ni↑ni↓ + Kn1n2 + Jd(Ps − Pt), (2.49)

where ni = ni↑ + ni↓ and Ps, Pt are projection operators onto singlet and triplet
pairs, respectively. Following the argument in Problem 1.2, we take the basis set |3〉
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and |4〉 for the singlet states. Including the kinetic energy part H1, the Hamiltonian
H1 + H2 for the singlet is given by the 2 × 2 matrix as

(
K + Jd −2t

−2t U

)
= K + Jd +

(
0 −2t

−2t U−

)
, (2.50)

where we put U− = U − K − Jd and the one-body energy εa is set to zero.
Comparing the last matrix with that in the solution to Problem 1.2, we obtain
Eq. (2.31) for the ground state energy.

Problem 2.3∗
We first derive the analytic expression of G(z). Using the variables defined by

kxa ≡ φx = φ+ − φ−, kya ≡ φy = φ+ + φ−. (2.51)

The integral is replaced by

∫ π

−π

dφx
2π

∫ π

−π

dφy
2π

→
∫ π

−π

dφ+
2π

∫ π

−π

dφ−
2π

. (2.52)

The validity of the replacement is understood by Fig. 2.4. These integrals correspond
to the angular average, and are abbreviated as 〈· · · 〉φ for the average over φ. By
writing εk in the product form

εk = 4t cosφ+ cosφ−, (2.53)

we obtain

G(z) =
〈 1

z − 4t cosφ+ cosφ−

〉

φ±
=
〈 1√

z2 − D2
2 cos2 φ+

〉

φ+
, (2.54)

Fig. 2.4 Integration regions
of angular variables. The
original one is indicated by
the shaded square, while the
larger square minus the
original one gives the
equivalent result by the
periodicity of the integrand.
The larger square corresponds
to the integration range
[−π, π ] for the variables φ±
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with D2 = 4|t |. The last integrand has the same from as the local Green function
in the one-dimensional case, which is given by Eq. (2.40). To obtain the second
equality we have taken the first average over φ− by the contour integral as in
the one-dimensional system, regarding 4t cosφ+ as the effective transfer. The
second average over φ+ results in the complete elliptic integral with the definition
Eq. (2.45). We thus obtain

G(z) = 2

πz
K
(
D2

z

)
, (2.55)

which tends to the correct asymptotic form 1/z since K(0) = π/2.
Let us now derive the density of states ρ2(ε) from Eq. (2.55) by setting z →

ε + i0+. For this purpose we introduce the auxiliary function

L(ζ ) =
∫ π/2

0
dφ

(
1 − ζ sin2 φ

)−1/2
, (2.56)

which is related to K by L(ζ 2) = K(ζ ). If ζ is taken as real variable: ζ → x, it is
obvious that Im L(x) = 0 for x < 1. For x > 1, on the other hand, we decompose
the integral into two ranges [0, φ0] and [φ0, π/2] with x sin2 φ0 = 1. Then only the
second range contribute to Im L(x) as

ImL(x) = ±
∫ π/2

φ0

dφ
(
x sin2 φ − 1

)−1/2
, (2.57)

where the sign depends on the infinitesimal imaginary part in x. We change to the
new integration variable θ so that the integral range becomes [0, π ]. This is realized
if we take

(x − 1) cos2 θ = x sin2 φ − 1, (2.58)

with φ0 ↔ θ = π/2 and φ = π/2 ↔ θ = 0. Using the ensuing relations

dφ

dθ
= −x − 1

x
· cos θ sin θ

cosφ sinφ
,

sin2 θ

cos2 φ
= x

x − 1
, (2.59)

we arrive at the remarkable identity:

ImL(x) = ± 1√
x
L

(
1 − 1

x

)
. (2.60)
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This is equivalent to

D2

ε
ImK

(
D2

ε + i0+

)
= −K

(√
1 − ε2

D2
2

)
θ(D2

2 − ε2), (2.61)

which gives Eq. (2.44).
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Chapter 3
Linear Response and Green Functions

Abstract The linear response means a change in the system proportional to the
magnitude of the external force. If the external force is infinitesimally small, the
higher order effects can safely be neglected. Actually the dominance of linear
response often extends to the practical range of the external force. Thus physical
properties such as electrical conduction and magnetic susceptibility are conveniently
described by the linear response theory. Furthermore, the linear response theory
leads to a simple relation between dissipation of energy, such as the Joule heat,
and fluctuation without external force. In this Chapter, we explain the linear
response theory starting with basics of statistical physics, proceeding to practical
applications such as deriving resistivity and magnetic relaxation. Various kinds of
Green functions appear in the linear response theory. In addition to those related to
response functions, we also discuss single-particle Green functions which describe
propagation and damping of bosons and fermions.

3.1 Static Response

Let us first consider the case of static external field. To be specific, we take an
isotropic system with the weak magnetic field B applied along the z-axis. The
magnetic moment M is induced in certain localized region in the system. The
interaction Hamiltonian is given by

Hext = −M · B = −MB, (3.1)

where the index for the z-component has been omitted in the rightmost side, The
statistical average without external field is given in terms of eigenstates |n〉 of the
system Hamiltonian H with the eigenvalue En as

〈M〉 =
∑

n

exp(−βEn)Mnn/
∑

n

exp(−βEn) ≡ Tr (ρM) . (3.2)

© Springer Japan KK, part of Springer Nature 2020
Y. Kuramoto, Quantum Many-Body Physics, Lecture Notes in Physics 934,
https://doi.org/10.1007/978-4-431-55393-9_3

31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-4-431-55393-9_3&domain=pdf
https://doi.org/10.1007/978-4-431-55393-9_3


32 3 Linear Response and Green Functions

Here ρ is called the statistical operator or the density matrix, which is given by

ρ = exp(−βH)/Tr exp(−βH) ≡ exp(−βH)/Z, (3.3)

with Z being the partition function. The magnetization M changes its sign under
the time reversal in common with spin operator or orbital angular momentum. If
the system described by H has the time-reversal symmetry, every eigenstate |n〉 has
a degenerate partner |m〉 such that Mmm = −Mnn. Hence we obtain 〈M〉 = 0 in
Eq. (3.2).

A magnetic field B breaks the time reversal. Then we derive the statistical
average 〈M〉ext up to the lowest order in B. Here the suffix of the average emphasizes
the external field described by Hext. The statistical operator of the total Hamiltonian
Htot = H + Hext is formally factorized as

exp(−βHtot) = exp(−βH)U(β), (3.4)

with

U(β) = exp(βH) exp(−βHtot). (3.5)

By taking derivative of both sides of Eq. (3.5) with respect to β, we obtain

∂

∂β
U(β) = eβH (H − Htot)e

−βHtot = −eβHHexte
−βHU(β). (3.6)

We now introduce the Matsubara picture by

HM
ext(β) ≡ eβHHexte

−βH = HH
ext(−iβ), (3.7)

where HH
ext(−iβ) is the Heisenberg picture with the imaginary time −iβ.

We solve the differential equation (3.6) by iteration using the Matsubara picture.
With the boundary condition U(β) = 1 for Hext = 0, we integrate both sides to
obtain

U(β) = 1 −
∫ β

0
dτHM

ext(τ ) + O(H 2
ext). (3.8)

Then the perturbed statistical average is evaluated as

〈M〉ext = Tr
[
exp(−βH)U(β)M]

/Tr
[
exp(−βH)U(β)]

= −
∫ β

0
dτ 〈HM

ext(τ )M〉 + O(H 2
ext)

= χB + O(H 2
ext), (3.9)
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where the magnetic susceptibility χ is given by

χ =
∫ β

0
dτ 〈MM(τ )M〉 =

∫ β

0
dτ 〈eτHMe−τHM〉, (3.10)

with Hext given by Eq. (3.1). The correction to the linear response in Eq. (3.9) begins
actually from O(H 3

ext), which is the subject of Problem 3.1.
We note that the average in Eq. (3.10) is taken for the system without external

field. Namely, the linear response measured by χ is basically given by the squared
average of the observable M , modified by integration over τ . The squared average
is closely related to the fluctuation of M . In the special case where M is conserved,
Eq. (3.10) gives the Curie law. Namely, if [M,H ] = 0, MM(τ ) is independent of τ .
Then we obtain

χ = β〈M2〉 = C/T , (3.11)

where C = 〈M2〉 is called the Curie constant.

3.2 Dynamic Response

We go on to the case with time-dependent external field such as oscillating magnetic
and electric fields [1]. The discussion now becomes more delicate than the case of
static fields. Namely, the dynamic linear response theory is built upon the following
two assumptions:

(a) The system is in thermal equilibrium before the external field, described by the
Hamiltonian Hext(t), is applied. Namely, the statistical weight of each eigenstate
|n〉 is given by ρn = exp(−βEn)/Z in the remote past.

(b) The system develops adiabatically in the course of application of Hext(t). In
other words, an eigenstate |n〉 develops to |n(t)〉 without changing the statistical
weight ρn. Then the statistical operator ρtot(t) at each time t is given by

ρtot(t) = |n(t)〉ρn〈n(t)|. (3.12)

We introduce external fields first at zero temperature, and derive the linear
response. For this purpose we introduce the unitary operator U(t) by the relation:

|Ψg(t)〉 = exp(−iHt)U(t)|Ψg(−∞)〉, (3.13)

where |Ψg(−∞)〉 is the eigenstate without Hext(t). Substitution to the Schrödinger
equation

i
∂

∂t

∣∣Ψg(t)〉 = [H + Hext(t)]
∣∣Ψg(t)〉 (3.14)
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leads to

i
∂

∂t
U(t) = exp(iHt)Hext(t) exp(−iHt)U(t) ≡ HH

ext(t)U(t), (3.15)

where we have used the Heisenberg picture HH
ext(t). The assumption (a) is used

as the boundary condition U(t) → 1 as t → −∞. Then U(t) is derived from
Eq. (3.15) by integration over t . Namely, we first replace U(t) in the RHS by 1, and
derive the solution iteratively. The solution takes the form analogous to the case of
static external fields:

U(t) = 1 − i
∫ t

−∞
dt ′HH

ext(t
′) + O(H 2

ext). (3.16)

Then the expectation value for arbitrary observable A at time t is given by

〈Ψg(t)|A|Ψg(t)〉 = 〈Ψg(−∞)|U†(t)AH(t)U(t)|Ψg(−∞)〉
= 〈Ψg(−∞)|AH(t)|Ψg(−∞)〉

− i
∫ t

−∞
dt ′〈Ψg(−∞)|[AH(t),HH

ext(t
′)]|Ψg(−∞)〉 + O(H 2

ext). (3.17)

It is straightforward to extend the analysis to finite temperature. By the assump-
tion (b), the average at time t is given by

Tr [Aρtot(t)] =
∑

n

ρn〈n(t)|A|n(t)〉. (3.18)

Hence the deviation δ〈AH(t)〉 from the equilibrium average 〈AH(t)〉 can be derived
as

δ〈AH(t)〉 = −i
∫ t

−∞
dt ′〈[AH(t),HH

ext(t
′)]〉 + O(H 2

ext), (3.19)

where the contribution of each |n(−∞)〉 to the statistical average has been taken
into account by generalization of Eq. (3.17). Equation(3.19) is commonly called the
Kubo formula. The same result can be obtained also from the equation of motion
for the density matrix, which is the subject of Problem 3.2.

As an example of dynamic external field, we take the magnetic field
B exp(−iωt ′) that oscillates in time t ′. The corresponding Hamiltonian is given
by HH

ext(t
′) = −MH(t ′)B exp(−iωt ′). To be precise, the Hermiticity of the

Hamiltonian requires that physical external field accompanies another Fourier
component exp(iωt ′). The effect of this component is immediately derived once
we know the response against the component exp(−iωt ′). Hence we discard the
component exp(iωt ′) unless we focus on the Hermite nature of the observable. We
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take the magnetization M as an observable. Then Eq. (3.19) with A = M leads to

δ〈MH(t)〉 = χ(ω) exp(−iωt)B, (3.20)

where χ(ω) is the dynamical susceptibility given by

χ(ω) = i
∫ t

−∞
dt ′〈[MH(t),MH(t ′)]〉 exp[iω(t − t ′)]. (3.21)

This is often called the Kubo formula for the dynamical susceptibility. In simple
cases, one can derive the dynamical susceptibility explicitly as demonstrated later
in Problem 3.3. Note the relation t ′ ≤ t for the integration range, which represents
the causality that the external field at t ′ influences the observable only at later time.
In other words, a future external field cannot influence the observable at present. As
we explain later, the causality is reflected on the analytic property of the dynamical
response function if it is regarded as a function of complex frequency.

3.3 Green Function and Its Spectral Representation

Throughout the section, the Heisenberg picture is used for the time dependence of
physical quantities. Hence we omit the upper index H for simplicity. Generalizing
Eq. (3.21) for the dynamical susceptibility to any quantities X and Y, we introduce
the retarded (R) Green function as follows:

〈[X, Y ]〉(z) ≡ −i
∫ ∞

0
dt 〈[X(t), Y ]〉eizt ≡

∫ ∞

−∞
dt DR

XY (t)e
izt , (3.22)

where the time t ′ for Y is set to zero because the integrand in Eq. (3.21) depends
only on the time difference t − t ′. The complex frequency z is in the upper half
plane, which guarantees the convergent integral. The name “retarded” for DR

XY (t)

or its Fourier transform 〈[X, Y ]〉(z) comes from the fact that the time t for X is
later than that for Y . On the other hand, the name “Green function” originates from
the special solution of a differential equation where the RHS is the delta function.
Actually this feature applies also to the present case. Namely, by comparing the
integration ranges in Eq. (3.22), we obtain

DR
XY (t) = −iθ(t)〈[X(t), Y ]〉. (3.23)

Since the expression includes the step function θ(t), the t-derivative of this part
gives rise to the delta function. It is obvious from Eq. (3.22) that the function
〈[X, Y ]〉(z) has finite derivatives of any order n in the upper half plane of z, because
tn exp(izt) goes to zero exponentially with t → ∞. This means that the Green
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function is analytic in the upper half plane. Note that the convergent integrals
originate from the positive integration range of t , which reflects the causality.

In the many-body theory, the Green function also describes propagation of
particles. The simplest is the single-particle Green function of bosons, which
corresponds to 〈[X, Y ]〉(z) provided X, Y are related to the Bose operators as in
X = b, Y = b†. The fermion Green function will be discussed later. In the case
of lattice vibration, the lattice displacement φ is related to phonon operators as
φ ∝ b+ b† in the symbolic notation. Hence the response function with X = Y = φ

is regarded as the (single-particle) phonon Green function.
We now take the space and time-dependent magnetic field B(r, t). The corre-

sponding Hamiltonian is given by

Hext(t) = −
∫

drM(r, t) · B(r, t)

= −
∑

q

M(q, t) · B(−q) exp(−iωt), (3.24)

where the second line is a result of spatial Fourier transform. The response
〈M(q, t)〉ext depends on time according to exp(−iωt). Setting the complex fre-
quency as z = ω + i0+ with positive but infinitesimal imaginary part, we obtain
the generalized susceptibility tensor

χμν(q, ω) = −〈[Mμ(q),Mν(−q)]〉(ω + i0+), (3.25)

which describes the response of μ-component of magnetization against the ν-
component of magnetic field. The quantity is often called the dynamical suscepti-
bility, which depends on both wave number and frequency. The negative sign in the
RHS is due to the definition (3.22). In general, the response function is determined
in terms of the retarded Green function.

In many fermion systems, response functions correspond to two-particle Green
functions of fermions. We consider an isotropic many-electron system where the
susceptibility tensor is reduced to a scalar. The magnetic moment along the z-axis
is written, in terms of creation and annihilation operators of electrons, as

Mz(q) = −μB
1√
V

∑

kσ

σc
†
kσ ck+qσ , (3.26)

with σ = ±1, and V being the volume of the system. In the case of non-interacting
electrons, the dynamical susceptibility can be derived exactly as

χ0(q, ω) = 2μ2
B

1

V

∑

k

f (εk+q) − f (εk)

ω − εk+q − εk
. (3.27)
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The derivation exploits the reduction:

[c†
1c2, c

†
2c1] = c

†
1[c2, c

†
2c1] + [c†

1, c
†
2c1]c2 = c

†
1c1 − c

†
2c2, (3.28)

where 1 and 2 symbolically represent quantum numbers. Further details of deriva-
tion are the subject of Problem 3.3.

The dynamical susceptibility reduces to the Pauli susceptibility in the limit of
ω = 0, q → 0, and T → 0. This can be confirmed as

lim
q→0

χ0(q, 0) = 2μ2
B

1

V

∑

k

(
−∂f (εk)

∂εk

)
⇒
T→0

μ2
Bρ(μ), (3.29)

where the derivative of the Fermi function tends to the delta function peaked at the
Fermi level μ. For free electrons with εk = k2/(2m), the density of states per spin
is given by ρ(μ) = mkF /π

2 with kF the Fermi momentum. It is necessary to keep
response functions independent of V so as to have a meaningful thermodynamic
limit. For this purpose we always take finite q in the calculation. The homogeneous
response is derived in the limit q → 0, as demonstrated in Eq. (3.29).

Let us investigate analytic properties of the Green function. It is most convenient
for this purpose to take matrix elements of X, Y in terms of the exact many-body
eigenstates |n〉 and |m〉 with the eigenenergies En and Em. Then integration in
Eq. (3.22) can be performed explicitly, with the result

〈[X, Y ]〉(z) = Av
n

∑

m

XnmYmn

z − ωmn

[1 − exp(−βωmn)]

=
∑

n

∑

m

ρn − ρm

z − ωmn

XnmYmn. (3.30)

Here Avn means the statistical average with respect to |n〉, and the explicit use of
the weight ρn gives the second line. We have used the notations Xnm = 〈n|X|m〉
and ωmn ≡ Em − En.

Equation (3.30) shows that the function 〈[X, Y ]〉(z) has the cut singularity only
along the real axis of z, and is analytic in both upper and lower half planes of z. The
part with Im z < 0, however, cannot be represented by the same time integral as the
retarded Green function. Instead we introduce the alternative representation for Im
z < 0:

〈[X, Y ]〉(z) = i
∫ 0

−∞
dt〈[X(t), Y ]〉eizt =

∫ ∞

−∞
dtDA

XY (t)e
izt , (3.31)

which is called the advanced Green function since the integration is in the negative
range of t . Note that the integral in Eq. (3.31) converges only in the lower half plane
of z. Summarizing the argument above, the function 〈[X, Y ]〉(z) is analytic except
for the real axis of z, and reduces to retarded and advanced Green functions in
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the upper and lower half planes, respectively. For response functions, the advanced
Green function is merely a mathematical device to construct the analytic function.
However, the advanced Green function for fermions describes physical (causal)
propagation of a hole (antiparticle) as explained in Sect. 3.7.

As a very useful quantity, we introduce the spectral function IXY (ω) by

IXY (ω) = Av
n

∑

m

XnmYmn[1 − exp(−βω)]δ(ω − ωmn)

=
∫ ∞

−∞
dt

2π
eiωt 〈[X(t), Y ]〉, (3.32)

with the relation to retarded and advanced Green functions:

〈[X(t), Y ]〉 = i[DR
XY (t) − DA

XY (t)]. (3.33)

In terms of IXY (ω), the Green function is represented by

〈[X, Y ]〉(z) =
∫ ∞

−∞
dω

IXY (ω)

z − ω
, (3.34)

which is called the spectral representation, or the Lehmann representation. The
most important is the case Y = X† for practical purpose, where IXX†(ω) is real
according to Eq. (3.32). In this case, the spectral function is an odd function of ω,
being positive for ω > 0. It is related to the imaginary part of the response function
as

IXX†(ω) = −IXX†(−ω) = − 1

π
Im 〈[X,X†]〉(ω + i0+), (3.35)

which is verified by use of the identity Im (x + i0+)−1 = −πδ(x). We shall
frequently use the odd function property in discussing various kinds of Green
functions.

The spectral function describes dissipation of energy. To exemplify this, we
consider the simplest case where the AC electric field along the z direction is
coupled to the polarization density P(r) in the isotropic system. The corresponding
Hamiltonian is given by

Hext(t) = −
∫

drP(r)E(r) exp(−iωt). (3.36)

According to the linear response theory, the dynamical polarizability α(q, ω) for the
electric field with wave vector q is given by

α(q, ω) = −〈[Pq , P−q ]〉(ω + i0+), (3.37)
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where Pq is the Fourier transform defined by

Pq = 1√
V

∫
drP(r) exp(−iq · r). (3.38)

The corresponding spectral function satisfies the relation

IPP (q, ω) = 1

π
Imα(q, ω). (3.39)

The polarizability is related to the dielectric function ε(q, ω) and the conductivity
σ(q, ω) by

ε(q, ω) = 1 + 4πα(q, ω) = 1 + 4πi

ω
σ(q, ω). (3.40)

Hence from Eqs. (3.39) and (3.40) we obtain

IPP (q, ω) = 1

πω
Re σ(q, ω), (3.41)

where the RHS represents the Joule heat for unit magnitude of electric field. Thus we
understand that the spectral function IPP (q, ω) represents the dissipation of energy.

The spectral function for X, Y in general is related to the correlation function of
X and Y. In quantum statistical physics, a convenient quantity is the symmetrized
correlation function defined by

〈{X(t), Y }〉 ≡ 〈X(t)Y + YX(t)〉. (3.42)

In the classical limit, or if X, Y commute with each other, the symmetrization is
simply equivalent to multiplication by two. By taking the matrix element XnmYmn

in (3.42) as in Eq. (3.32), we can derive the relation

〈{X(t), Y }〉 =
∫ ∞

−∞
dω coth

(
βω

2

)
IXY (ω) exp(−iωt). (3.43)

In the special case of Y = X† with t = 0, the LHS of Eq. (3.43) represents the
fluctuation of X. On the other hand, the spectral function IXX†(ω) on the RHS
represents the dissipation of energy as we have seen for X = P . Namely, Eq. (3.43)
with Y = X† relates the fluctuation of the quantity X to the dissipation of energy.
Hence Eq. (3.43) is often called the fluctuation–dissipation theorem.
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3.4 Green Functions with Imaginary Time

In the linear response theory, both the statistical operator exp(−βH) and the time-
boost operator exp(−itH) play important roles. The two operators take similar
exponential forms, and identification of β as an imaginary time leads to the
Matsubara picture defined by Eq. (3.7). The use of imaginary time provides an
extremely powerful framework in the Green function, which is often called the
thermal (or Matsubara) Green function. This Section explains the basics of the
thermal Green function [2] which are related to response functions. The fermion
Green function will be explained later in Sect. 3.7. In the Matsubara picture, a
physical observable X, which behave as a bosonic operator, is represented by

eτHXe−τH ≡ XM(τ ) (3.44)

for imaginary time τ . Assuming −β < τ < β, we introduce the thermal Green
function DXY [τ ] by

DXY [τ ] = −〈TτXM(τ )Y 〉 =
{−〈XM(τ )Y 〉, (τ > 0)

−〈YXM(τ )〉, (τ < 0),
(3.45)

where Tτ arranges the operators X, Y in descending order of the imaginary time,
and is called the time-ordering operator. The angular bracket used in DXY [τ ] distin-
guishes the quantity from its Fourier decomposition to be defined by Eq. (3.47). As
we shall discuss later, if X and Y are fermionic operators, the sign is reversed for
τ < 0, leading to +〈YXM(τ )〉.

By direct evaluation of Eq. (3.45), we recognize that DXY [τ ] is a periodic
function of τ with periodicity β. Namely, using the relation ρn = ρm exp(βωmn)

with eigenstates |n〉 and |m〉, we obtain for −β < τ < 0:

DXY [τ ] = −
∑

nm

ρnYnmXmn exp(τωmn)

= −
∑

nm

ρmYnmXmn exp[(τ + β)ωmn] = DXY [τ + β]. (3.46)

Hence, the Fourier decomposition is carried out in the range −β < τ < β as

DXY [τ ] = T
∑

n

DXY (iνn) exp(−iνnτ), (3.47)

where the imaginary frequency iνn = 2π inT is called the (even) Matsubara
frequency with n an integer. The even Matsubara frequency is associated with
bosonic operators.
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The expression for 0 < τ < β is given with use of the spectral function as

DXY [τ ] = −
∫ ∞

−∞
dωIXY (ω)

e−τω

1 − e−βω
, (3.48)

which leads to the Fourier component DXY (iνn) as

DXY (iνn) =
∫ β

0
dτDXY [τ ] exp(iνnτ) =

∫ ∞

−∞
dω

IXY (ω)

iνn − ω
. (3.49)

The rightmost form demonstrates a surprising relation

DXY (iνn) = 〈[X, Y ]〉(iνn), (3.50)

by comparison with Eq. (3.34). Namely, the thermal Green function is related to
retarded and advanced Green functions by analytic continuation [3]. This relation is
practically most useful since the thermal Green function can be analyzed in terms of
diagrammatic perturbation theory, as we discuss in later chapters. Thus a physical
response function can also be analyzed diagrammatically, which greatly facilitate a
systematic approximation.

In the special case of X = Y = M in Eq. (3.50), the thermal Green function
corresponds to the dynamical susceptibility with imaginary frequency. In the case
of free electrons, DXX†(iνn) with X = c

†
1c2 can be derived exactly as

DXX†(iνn) = f2 − f1

iνn − ε2 + ε1
. (3.51)

This result will be repeatedly used in the rest of this chapter. The derivation is the
subject of Problem 3.4.

In concluding this section, we give a special case where the analytic continuation
in Eq. (3.50) does not work. Consider a system in which M is conserved and
Eq. (3.10) gives the Curie law. If the analytic continuation is valid, the Matsubara
Green function DMM(iνn = 0) and the retarded Green function 〈[M,M]〉(z = 0)
should be the same. However, since [M(t),M] = 0, Eq. (3.21) leads to χ(ω) = 0
for any ω, including ω = 0. The vanishing dynamic susceptibility originates
from the lack of ergodicity in the motion of isolated magnetic moment. Without
ergodicity, the ensemble average gives the Curie law, while the time average gives
χ(0) = 0. Therefore, due care is necessary in dealing with conserved quantities.
Problem 3.5 discusses a procedure to recover the ergodicity, and derive the static
limit properly.
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3.5 Relaxation Function

Among various modes of response to external perturbations, we consider the
situation where a constant external field was present for t < 0, but it is suddenly
switched off at t = 0. For example, if a small external magnetic field is given
by B(t) = Bθ(−t), the magnetization M at t < 0 is given by χB. For t > 0,
the magnetization remains nonzero for a while. The behavior of magnetization for
t > 0 is referred to as relaxation.

Generalizing this example to arbitrary observable, we consider a quantity
〈X(t)〉ext for t > 0, which was coupled to an external field via Y up to t = 0.
As we shall prove in the end of this section, the behavior is determined by

〈X(t);Y 〉 ≡ 1

β

∫ β

0
dλ〈X(t − iλ)Y 〉, (3.52)

which is called the canonical correlation function. This name implies a quantum
version of the correlation function associated with the average over λ. The quantity
β〈X(t);Y 〉 is called the relaxation function. By definition, the initial value 〈X(t =
0);Y 〉 corresponds to the static susceptibility since the statistical operator for
〈X(t ≤ 0)〉ext is given by exp[−β(H + Hext)]/Ztot.

The Laplace transform of the canonical correlation function is given by

〈X;Y 〉(z) ≡
∫ ∞

0
dt〈X(t);Y 〉eizt , (3.53)

which is related to the response function via the spectral function. Namely, by
taking matrix elements such as Xnm in terms of eigenbases n,m of H , we obtain

〈X(t);Y 〉 =
∫ ∞

−∞
dω

IXY (ω)

βω
e−iωt . (3.54)

Hence the Laplace transform of exp(−iωt) and the use of Eq. (3.34) leads to the
relation

〈X;Y 〉(z) = (izβ)−1{〈[X, Y ]〉(z) − 〈[X, Y ]〉(0)}. (3.55)

On the other hand, the time derivative Ẏ of the operator Y has the spectral
function IXẎ (ω) satisfying IXẎ (ω) = iωIXY (ω), as can be checked with use of
Eq. (3.32). Hence the following relations hold:

β〈X; Ẏ 〉(z) = −〈[X, Y ]〉(z), (3.56)

β〈X(t); Ẏ 〉 = i〈[X(t), Y ]〉. (3.57)
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We now show that Eq. (3.56) gives the electrical conductivity in terms of a relaxation
function. The perturbation by electric field is given by Eq. (3.36), and the electric
current J and the polarization P are related by Ṗ = J . Thus the Kubo formula
together with Eq. (3.56) gives

σ(z) = −〈[J, P ]〉(z) = β〈J ; J 〉(z). (3.58)

where the rightmost side is precisely the relaxation function.
Finally we return to the case of magnetic relaxation with X = Y = M , and

explain how Eq. (3.52) describes the relaxation. We obtain

β〈M(t);M〉 = β

∫ 0

−∞
dt ′〈M(t); Ṁ(t ′)〉 = i

∫ 0

−∞
dt ′〈[M(t),M(t ′)]〉, (3.59)

where we have used Eq. (3.57) in the second equality. The rightmost quantity gives
〈M(t)〉/B for t > 0 according to Eq. (3.19). Hence the relaxation function indeed
describes the decay of the induced magnetization after the constant external field is
switched off.

Figure 3.1 illustrates an example of 〈M(t)〉 where the dynamical susceptibility
takes the form

χ(ω) = χΓ

−iω + Γ
. (3.60)

In this case, we obtain the relaxation function from Eq. (3.54) as

β〈M(t);M〉 = χ exp(−Γ t), (3.61)

for t > 0.

Fig. 3.1 An example of
magnetic relaxation where the
external field is given by
B(t) = Bθ(−t). The
magnetization 〈M(t)〉 for
t > 0 decays in accordance
with the relaxation function
β〈M(t);M〉

0

M(t)

t
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3.6 Liouville Operator Formalism

In more advanced treatment of the nonequilibrium property, it is convenient to
regard the relaxation function as a kind of inner product between vectors |X〉 and
|Y 〉 associated with the Hermitian operators (observables) X and Y. For example,
the static susceptibility χXY is regarded as the inner product 〈X|Y 〉 by the relation

〈X|Y 〉 ≡
∫ β

0
dτ 〈exp(τH)X exp(−τH)Y 〉 = β〈X;Y 〉, (3.62)

where the canonical correlation function 〈X;Y 〉 has been defined by Eq. (3.52). It
can be checked that the inner product satisfies 〈X|Y 〉 = 〈Y |X〉 in addition to the
standard linear relation such as

〈X|a1Y1 + a2Y2〉 = a1〈X|Y1〉 + a2〈X|Y2〉.

We now introduce the Liouville operator L by the relation LX ≡ [H,X] with
the Hamiltonian H . Simple calculation shows

〈X|L|Y 〉 ≡ 〈X|LY 〉 = 〈LX|Y 〉, (3.63)

which means that L is a Hermitian operator for the present inner product. The
Liouville operator together with the inner product provides the compact expression
for the relaxation function. Namely, using X(t) = exp(iLt)X in Eq. (3.53) and the
Hermiticity of L, we obtain

〈X;Y 〉(z) = 〈X| i

z − L |Y 〉 ≡ CXY (z). (3.64)

Furthermore, the dynamical susceptibility defined by Eq. (3.22) is represented by
the use of Eq. (3.55) as

χXY (z) = 〈X| L
L − z

|Y 〉. (3.65)

These compact expressions lead to a framework which enables one to focus
on slow observables such as magnetization or electric current that is relevant to
relaxation. We take the dynamical magnetic susceptibility χM(z) as a representative
example. Corresponding to the observable M , a projection operator P is introduced
by

P ≡ |M〉χ−1
M 〈M|, (3.66)

where χM = 〈M|M〉 is the static susceptibility. The property P2 = P = P† is
easily checked, which is a necessary condition for the projection operator. Another
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projection operator Q is defined by Q = 1 − P as the complement of P . These
projection operators are useful to deal with (z − L)−1, which appears in the
relaxation function CM(z).

We now recall the following relation for a 2 × 2 matrix:

[(
a b∗
b c

)−1
]

11

= 1

a − b∗c−1b
. (3.67)

The relation is generalized to matrices a, b, c with dimensions n × n, m × n, and
m × m, respectively. Then the RHS of Eq. (3.67) should be regarded as the inverse
matrix of the denominator with the dimension n × n, and b∗ should be modified to
b†.

Using the projection operators, we make the following substitution:

a = P(z − L)P, b = −QLP, c = Q(z − L)Q. (3.68)

Then corresponding to Eq. (3.67), we obtain the expression [4]:

CM(z) = iχM [z − ΩM + iΓ (z)]−1, (3.69)

or, equivalently,

χM(z) = χMΓ (z)/[−i(z − ΩM) + Γ (z)], (3.70)

where

ΩM = χ−1
M 〈M|L|M〉, (3.71)

describes the frequency of averaged motion. We obtain using Eq. (3.54)

i〈M|L|M〉 =
∫ ∞

−∞
dωIMM(ω) = 0, (3.72)

where the spectral function IMM(ω) = IMṀ(ω)/(iω) is an odd function. The result
Ω = 0 holds in most cases of our interest. In the presence of finite magnetic field,
however, the precession of magnetic moment is described by Ω which is extended
to matrix. Problem 3.6 deals with such extension where multiple variables Xi (i =
1, 2, . . .) become relevant.

On the other hand, Γ (z) is given by

Γ (z) = χ−1
M 〈QṀ| i

z − QLQ |QṀ〉, (3.73)
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with Ṁ = iLM . As will be explained soon, Γ (z) describes the dissipation
associated with dynamics of M in terms of the canonical correlation function of the
random force QṀ . Hence Eq. (3.73) is regarded as another form of the fluctuation-
dissipation theorem [4, 5], which is in fact closer to the original form for the
Brownian motion of a classical particle in terms of random force. In the classical
case, the correlation function of the random force gives decay of the particle velocity
by dissipation. The velocity is replaced by M in the present case.

So far the discussion is exact, but tautological in the sense of playing with iden-
tical expressions. Equation (3.69) provides physical intuition on relaxation if QṀ

is characterized by dynamics faster than that of M . More generally the choice of P
should be made for slow variables. The framework leading to Eqs. (3.69)–(3.73) is
often called the Mori (or Mori–Zwanzig) formalism [6], which is also practical for
approximate treatment. As an example, we derive the magnetic relaxation rate of a
magnetic impurity with spin S in metallic matrix. The perturbation Hamiltonian is
given by

H1 = JS · s ≡ J

2N

∑

i

∑

k,k′

∑

αβ

Si (σi)αβ c
†
kα
ck′β, (3.74)

where s is the spin of conduction electrons at the impurity site R = 0, and N the
total number of lattice sites. The unperturbed Hamiltonian H0, which is the kinetic
energy of conduction electrons, conserves S and hence M ≡ gμBSz. Then it follows
that Ṁ = iLM = i[H1,M]. Since this is already first order in H1, Γ (z) in the lowest
order O(H 2

1 ) is derived by replacing H by H0 in time development. Furthermore,
we may put Q = 1 since 〈M|Ṁ〉 = 0. Thus we obtain from Eq. (3.73),

Γ (z) = χ−1
M 〈Ṁ|i(z − L0)

−1|Ṁ〉0

= 1

izχM

{〈[Ṁ, Ṁ]〉0(z) − 〈[Ṁ, Ṁ]〉0(0)
}
, (3.75)

with use of Eq. (3.55). The suffix 0 indicates the average with respect to H0.
The retarded Green function is most easily derived from the Matsubara Green

function which is computed as

〈[Ṁ, Ṁ]〉0(iνn) = 1

2
J 2CM

1

N2

∑

k,k′

f (εk) − f (εk′)

iνn − εk + εk′
, (3.76)

where CM = μ2
BS(S + 1)/3 is the Curie constant. By analytic continuation to

z = ω + i0+, and taking the limit ω → 0, we obtain

Γ (0) = 1

2
(Jρc)

2T , (3.77)



3.6 Liouville Operator Formalism 47

with ρc being the density of states. As Eq. (3.76) indicates, the ω dependence
in Γ (ω) becomes relevant only for ω of the order of the bandwidth. Thus the
T -linear relaxation is observed widely as characteristic of the itinerant fermion
reservoir. This is often called the Korringa relaxation, the name of which comes
from relaxation phenomena of the nuclear spin responsible for M [7]. In this case
J corresponds to the hyperfine interaction. The Korringa relaxation is also observed
with a magnetic impurity where localized electrons form M . Details of derivation
for Eqs. (3.76) and (3.77) are the subject of Problem 3.7.

In a similar manner, we can derive the optical conductivity σ(ω) from the current
relaxation function. For simplicity, we assume the spectrum εk = k2/(2m) for
electrons and neglect the spin. Electrons are scattered by impurities which are
located randomly. The interaction with the impurity at the origin is given by

H10 =
∫

dru(r)Ψ †(r)Ψ (r), (3.78)

where u(r) = u(r) is the spherically symmetric impurity potential and

Ψ (r) = 1√
V

∑

k

ck exp(ik · r), (3.79)

with V being the volume of the system. We take the volume of the unit cell as unity
so that V = N . The perturbation Hamiltonian H1 is the sum of H10 and similar ones
from other impurities with the density ni . The Fourier transform Jq of the electric
current along the z-direction is given by

Jq = − e

m
√
V

∑

k

kzc
†
k−q/2ck+q/2, (3.80)

which in the q → 0 limit commutes with the unperturbed Hamiltonian H0
describing the kinetic energy. We use Eqs. (3.58) and (3.69) to obtain

σ(q, z) = 〈Jq |J−q〉/[−iz + Γ (q, z)]. (3.81)

In the lowest order in the impurity potential, Γ (q, z) is given by the form of
Eq. (3.75) in which M is replaced by J±q . After some algebra, which is the subject
of Problem 3.7, we obtain for q → 0

〈Jq |J−q〉0 =
( e

m

)2 1

V

∑

k,k′
δ(k − k′ + q, 0)kzk

′
z

f (εk) − f (εk′)

εk′ − εk

→ ne2

m
,

(3.82)

〈[J̇q , J̇−q ]〉0(iνn) =
( e

m

)2 ni

V 2

∑

k,k′
|u[k − k′]|2(kz − k′

z)
2 f (εk) − f (εk′)

iνn − εk + εk′
,

(3.83)
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where n and ni are the electron and impurity densities, respectively, δ(p, 0) is the
Kronecker delta, and u[k − k′] is the Fourier transform of u(r). Proceeding in the
same manner as in the case of the Korringa relaxation, Γ (q = 0, ω = +i0+) is
derived as

Γ (0, i0+) = 2
∫ π

0
dθ(1 − cos θ)

∣∣u[kF(e0 − eθ )]
∣∣2ρc(εF) ≡ 1

τtr
, (3.84)

where eθ is the unit vector along the polar angle θ from the z-axis of k. The ω-
dependence of Γ is negligible as long as ω � εF. The temperature dependence is
also negligible as long as T � εF. More details of the derivation is the subject
of Problem 3.7. The result for the transport relaxation time 1/τtr is consistent
with the one obtained by the kinetic (Boltzmann) equation [6]. In contrast to the
latter approach, the derivation here is automatic, relying only on the lowest-order
perturbation theory for the relaxation rate. In summary, the optical conductivity
takes the Drude form:

σ(ω) = ne2

m

/(
−iω + 1

τtr

)
, (3.85)

which in the static limit reduces to the dc resistivity

ρ = m/(ne2τtr), (3.86)

with 1/τtr given microscopically by Eq. (3.84).
We have learned that the Lorentzian form of the response function is valid if the

focused frequency ω is much smaller than the characteristic frequency in Γ (ω) so
that its ω-dependence can be neglected. In order to study the spectral shape more
generally, we turn to another approach that deals with time t instead of frequency.
As a preliminary, we represent the relaxation function as

〈M(t)|M〉 = 〈M| exp(−iLt)|M〉 ≡ 〈〈exp(−iLt)〉〉〈M|M〉, (3.87)

where the average 〈〈· · · 〉〉 has been introduced. Then expanding exp(−iLt) and
comparing the coefficient of tn with that obtained from the expression Eq. (3.54),
we obtain the spectral moments 〈ωn〉 (n = 0, 1, 2 . . .) as

〈ωn〉 ≡ 〈〈Ln〉〉 =
∫ ∞

−∞
dω

π
ωn−1Im

χM(ω)

χM
, (3.88)

in terms of the dynamical susceptibility.
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In addition to the moments, the related quantity called the cumulant is commonly
used in characterizing the statistical distribution. In the case of relaxation phenom-
ena, we manipulate as follows:

〈〈exp(−iLt)〉〉 = exp[〈〈exp(−iLt)〉〉c − 1] ≡ exp[−i〈ω〉t + X(t)], (3.89)

where X(t) generates the cumulants 〈ωn〉c ≡ 〈〈Ln〉〉c by

X(t) =
∞∑

n=2

(−it)n

n! 〈ωn〉c. (3.90)

Of particular importance is the second cumulant

〈ω2〉c = 〈〈L2〉〉 − 〈〈L〉〉2. (3.91)

The moments and cumulants are derived by expansion in terms of t , which assumes
smooth continuation from the initial stage of the relaxation. In the Gaussian
distribution, the cumulants higher than the third all vanish, the proof of which is the
subject of Problem 3.8. On the other hand, in the case of the Lorentzian spectrum,
all moments with n ≥ 2 are divergent. As we shall discuss below, the Lorentzian
spectrum is relevant only to the the long-time behavior, which corresponds to the
small frequency region of the relaxation spectrum.

In order to combine the complimentary aspects of long and short times, we
appeal to less rigorous but more intuitive argument. The function X(t) in Eqs. (3.90)
starts from 0 at t = 0, and should decrease as the time passes, as long as the
relaxation takes place in Eq. (3.89). We define the characteristic time τR in X(t)

so that ReX(τR) = −1. Then the relaxation function should be negligibly small
for t � τR . In such large time t , however, the expansion form Eq. (3.90) may
not be valid, since the dissipation effect breaks the analyticity in time. In fact, the
Lorentzian spectrum is equivalent to the following behavior for t � τR:

X(t) → −i(δω − iΓ )t, (3.92)

where δω is the shift in resonance frequency. Note that the t-linear term with Γ is
absent in Eq. (3.90). The term with Γ breaks the time reversal, and emerges only
with the boundary condition imposing the causality. The simplest form with account
of the causality is given by

X(t) = −
∫ t

0
dt1

∫ t1

0
dt2g(t1 − t2) = −

∫ t

0
dτ(t − τ)g(τ ), (3.93)

where g(τ) is the cumulant correlation function of QṀ . In order to understand the
qualitative feature, we take a phenomenological model

g(τ) = g(0) exp(−τ/τC), (3.94)
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with another characteristic time τC . For simplicity we assume that g(0) is real,
which implies 〈ω〉 = δω = 0. In this case we obtain

X(t) = −g(0)τ 2
C[1 − t/τC + exp(−t/τC)] →

{
− 1

2g(0)t
2 (t � τC),

−g(0)τCt (t � τC).
(3.95)

As extreme cases, we consider (i) τC � τR and (ii) τC � τR , with g(0) = D2 ∼
τ−2
R . Namely, τC separates the short-time behavior described by Eq. (3.90), and the

long-time behavior described by Eq. (3.92). In the case (i), the short-time behavior
is dominant in X(t). The spectrum becomes the Gaussian with the explicit form

Im
χM(ω)

ω
=
√
π

2

χM

D
exp

[
−1

2

( ω
D

)2
]
, (3.96)

where

D2 = χ−1
M 〈Ṁ|Ṁ〉. (3.97)

It is possible to derive D by perturbation theory.
In the case (ii), Eq. (3.95) shows that the relaxation is dominated by the

Lorentzian form as described by Eq. (3.92). The relaxation rate is given by
Eq. (3.75) with z = 0, or by Γ = D2τC ∼ τC/τ

2
R according to Eq. (3.95). Hence

with given D, the relaxation rate in the case (ii) is smaller than that in (i) by the
factor τC/τR � 1. The reduction associated with the Lorentzian spectrum is often
referred to as the motional narrowing [8].

Figure 3.2 illustrates the typical spectra for both cases (i) and (ii). The ratio τC/τR
in the figure should not be taken seriously, which is shown just for illustration.

O
ω

OO

(a) (b)
Imχ(ω)/ω

ω

Imχ(ω)/ω

1/τR 1/τR1/τC 1/τC

Fig. 3.2 Spectral shapes of dynamical susceptibility for (a) the Gaussian case with τC � τR
and (b) the Lorentzian case with τR � τC . The time τC characterizes the switching scale in the
cumulant function X(t) as given by Eqs. (3.89) and (3.92), while τR controls the initial behavior
of X(t) as X(t) ∼ − 1

2 (t/τR)
2. See text for details
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3.7 Green Function for Fermions

The single-particle Green function gives a building block for response functions,
which corresponds to the two-particle Green function. Hence it is appropriate to
discuss the Green function for fermions here. We use indices i, j to represent
symbolically spatial coordinates, momentum, and other degrees of freedom of
fermions. With the fermionic creation ψ

†
j and annihilation ψi operators, the thermal

Green function Gij [τ ] is defined by

Gij [τ ] = −〈TτψM
i (τ )ψ

†
j 〉 =

{
−〈ψM

i (τ )ψ
†
j 〉 (τ > 0)

〈ψ†
j ψ

M
i (τ )〉 (τ < 0).

(3.98)

with −β < τ < β. It is straightforward to show, following the bosonic case given by
Eq. (3.46), that the Green function is anti-periodic in τ with the period β. Namely,
for −β < τ < 0 we obtain

Gij [τ ] = −Gij [τ + β]. (3.99)

Hence the Green function can be Fourier decomposed into Gij (iεn) with odd
Matsubara frequencies iεn = iπ(2n + 1)T .

As in the case of response functions, a useful quantity is the spectral function
ρij (ε) defined by

ρij (ε) = Av
n

∑

m

(ψi)nm(ψ
†
j )mn

[
1 + exp(−βε)

]
δ(ε − εmn)

=
∫ ∞

−∞
dt

2π
eiεt 〈{ψi(t), ψ

†
j }〉. (3.100)

Note that the anticommutator appears in Eq. (3.100) in contrast with the commutator
in Eq. (3.32). Using the spectral function, we obtain the representation for 0 < τ <

β:

Gij [τ ] = −
∫ ∞

−∞
dερij (ε)[1 − f (ε)] exp(−ετ) (3.101)

which leads to

Gij (iεn) =
∫ β

0
dτGij [τ ] exp(iεnτ) =

∫ ∞

−∞
dε

ρij (ε)

iεn − ε
. (3.102)
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The rightmost form is the spectral (or Lehmann) representation for the fermionic
case. The definition (3.100) immediately leads to the sum rule

∫ ∞

−∞
dερij (ε) = δij . (3.103)

Hence Eq. (3.102) can be regarded as superposition of the Green functions 1/(iεn −
ε) for free particles with energy ε. The effect of interactions appears in the weight
ρij (ε).

In performing the inverse transform of Eq. (3.102), we use the following formula
for summation over Matsubara frequencies:

T
∑

n

exp(iεnτ)

iεn − ε
=
{
f (ε) exp(ετ ), (τ < 0)

[f (ε) − 1] exp(ετ ), (τ > 0),
(3.104)

where f (ε) = 1/(eβε + 1) is the Fermi distribution function. In the case of
τ = 0, the slow asymptotic decay 1/(iεn) of the summand makes the summation
logarithmically divergent. However, with use of the pair-wise combination:

1

iεn − ε
+ 1

−iεn − ε
= − ε

ε2
n + ε2 , (3.105)

the asymptotic behavior 1/ε2
n leads to convergence. This conditional convergence of

the summation is the origin of discontinuity at τ = 0, which is consistent with the
definition given by Eq. (3.98). The proof of Eq. (3.104) is the subject of Problem 3.9.

For free particles with the Hamiltonian, H = ∑
k εkψ

†
k ψk , the time dependence

can be derived explicitly as

ψk(t) = exp(iHt)ψk exp(−iHt) = exp(−iεkt)ψk. (3.106)

Therefore the spectral function defined by Eq. (3.100) is derived as

ρk(ε) = δ(ε − εk). (3.107)

The thermal Green function follows from Eq. (3.102) as

Gk(iεn) = 1

iεn − εk
. (3.108)

For a general case with the Hamiltonian matrix hij , we obtain

Gij (iεn) =
(

1

iεn − h

)

ij

, (3.109)
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which can be confirmed by diagonalization of h with a proper unitary transforma-
tion.

By analytic continuation of Matsubara frequencies to complex frequency z in the
upper half plane, we obtain Gij (z), which corresponds to the Fourier transform

Gij (z) =
∫ ∞

−∞
dteiztGR

ij (t), (3.110)

of the retarded Green function

GR
ij (t) = −iθ(t)〈{ψi(t), ψ

†
j }〉. (3.111)

Note that Eq. (3.111) involves the anticommutator in contrast with the commutator
in Eq. (3.22) for the bosonic Green function. On the other hand, the analytic
continuation to z in the lower half plane gives the Fourier transform of the advanced
Green function

GA
ij (t) = iθ(−t)〈{ψi(t), ψ

†
j }〉. (3.112)

Namely, we obtain with Im z < 0:

Gij (z) =
∫ ∞

−∞
dteiztGA

ij (t). (3.113)

The retarded and advanced Green functions in the time domain are reproduced from
Eq. (3.108) which is the subject of Problem 3.10. The difference of retarded and
advanced Green functions amounts to

〈{ψi(t), ψ
†
j }〉 = i

[
GR

ij (t) − GA
ij (t)

]
, (3.114)

which leads to the spectral function by Fourier transform, as given by Eq. (3.100).
It is instructive to compare with the bosonic case in Eq. (3.33).

In many fermion systems, we may interpret the retarded Green function as
describing the propagation of particles with positive energy measured from the
chemical potential μ. On the other hand, the advanced Green function describes
the propagation of holes, which is equivalent to backward propagation of particles
with negative energy. To recognize the hole propagation, we take the non-interacting
system at T = 0, and choose the energy εk < 0 measured from μ. We write the
advanced Green function as

GA
k (t) = iθ(−t)f (εk) exp(−iεkt) = iθ(t ′)[1 − f (ε′

k)] exp(−iε′
kt

′), (3.115)

where the backward propagation (t < 0) is translated into the forward propagation
(t ′ = −t > 0) of the hole with positive energy ε′

k = −εk .
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We now consider another non-interacting system where the basis set has both
localized (impurity) state and itinerant states. The latter is characterized by the
crystal momentum k. This system is convenient in introducing concept of the self-
energy in an explicit manner. The Hamiltonian is written as

H = εf f
†f +

∑

k

εkc
†
kck + V√

N

∑

k

(c
†
kf + f †ck), (3.116)

where f and ck denote annihilation operators of localized and itinerant states,
respectively, and N denotes the number of k states. These states hybridize with
the local state by the strength V . We use the matrix h to represent the Hamiltonian
in the present basis set, and obtain

z − h =
(
z − εf −V †

−V z − hc

)
, (3.117)

where all elements of the vector V and its conjugate V † consist of V/
√
N , and hc

is an N × N diagonal matrix with elements εk . In such a case, the matrix identity
Eq. (3.67) gives the Green function Gf (z) of the localized state as

Gf (z) = [(z − h)−1]11 =
(
z − εf − V †(z − hc)

−1V
)−1

≡ (
z − εf − Σf (z)

)−1
, (3.118)

where Σf (z) is the simplest example of the self-energy, which modifies the bare
spectrum characterized by εf . Namely, with z = ε + i0+, the real part Re Σf (ε)

describes the shift Δε from the bare energy εf . Here i0+ can be neglected. The shift
satisfies the self-consistent relation,

Δε = ReΣf (εf + Δε), (3.119)

which resembles the Brillouin–Wigner perturbation theory as given by Eq. (1.6). On
the other hand, −ImΣf (ε + i0+) ≥ 0 describes the damping of the excitation. The
meaning of real and imaginary parts of the self-energy is general and applicable
also to homogeneous systems with mutual interactions. We shall discuss typical
examples later, especially in Chap. 10.

It is instructive to derive Σf (z) explicitly in the special case of constant density
of states ρc inside the energy band: −D < ε < D of itinerant states. We can
immediately obtain

Σf (z) = V 2ρc

∫ D

−D

dε
1

z − ε
= V 2ρc ln

z + D

z − D
. (3.120)
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Due care is necessary in evaluating the logarithm with complex argument. With
z = ε ± i0+, the logarithm is evaluated as

ln
ε + D ± i0+
ε − D ± i0+

= ln

∣∣∣∣
ε + D

ε − D

∣∣∣∣∓ iπθ(D2 − ε2). (3.121)

There is a discontinuity of 2π above and below the branch cut ε ∈ [−D,D]. As
long as |z| � D, the real part of the logarithm has much smaller absolute value of
O(|z|/D) than the imaginary part π . Hence we obtain for small |z|,

Σf (z) = −sgn(Im z)iΔ + O(z/D), (3.122)

with Δ ≡ πV 2ρc. Note that we have the finite damping even though all the
eigenvalues of the Hamiltonian matrix h are real. The complex value of the self-
energy is the result of projection onto the localized state, for which itinerant states
behave like the reservoir. We have met analogous situation in the linear response
theory where the total Hamiltonian, which is Hermitian, can bring about damping
of certain degrees of freedom observed.

It is remarkable that the sign of the imaginary part is consistent with analytic
properties of the Green functions. Namely, the retarded Green function is given,
with neglect of ReΣf , by

Gf (z) = (z − εf + iΔ)−1, (3.123)

which has no singularity in the upper half plane of z. The spectral density is given
by

ρf (ε) = − 1

π
Im Gf (ε + i0+) = 1

π
· Δ

(ε − εf )2 + Δ2 . (3.124)

The Lorentzian density of states is typical of the resonant state. In the time domain,
we obtain from the inverse Fourier transform of Eq. (3.123),

GR
f (t) = −iθ(t) exp

[−i(εf − iΔ)t
]
, (3.125)

which has the damping Δ, or the lifetime 1/Δ. Thus the imaginary part of the self-
energy is analogous to the relaxation rate of magnetic moment, or that of current as
described in Eq. (3.85).

Problems

3.1 Show that in the magnetization given by Eq. (3.9), correction terms begin from
O(B3).



56 3 Linear Response and Green Functions

3.2 Derive the Kubo formula Eq. (3.19) by using the density matrix.

3.3 Derive the dynamical magnetic susceptibility for free electrons, and show that
the static and long-wavelength limit reproduces the Pauli spin susceptibility.

3.4 Derive the dynamical susceptibility with even Matsubara frequencies for free
electrons, and confirm the property given by Eq. (3.50).

3.5 Assume a finite magnetic field Bz along the z-direction, and derive the
transverse dynamical susceptibility χ⊥(ω) for an isolated spin. Show that the Curie
law is obtained in the limit Bz → 0.

3.6 Generalize Eq. (3.69) to the case where multiple variables Xi (i = 1, 2, . . .)
become relevant for slow relaxation.

3.7 ∗ Derive the Korringa relaxation rate given by Eq. (3.77), and the current
relaxation rate given by Eq. (3.84)

3.8 Show that cumulants in the Gaussian distribution vanish in all orders higher
than two.

3.9 Prove Eq. (3.104) for summation over Matsubara frequencies.

3.10 Derive retarded and advanced Green functions with real time using the thermal
Green function for free fermions,

Solutions to Problems

Problem 3.1
The first line of the RHS in Eq. (3.9) is expanded in terms of B in Hext for both
numerator and denominator as follows:

〈M〉ext = (a1B + a3B
3 + . . .)/(a0 + a2B

2 + . . .), (3.126)

where the nonzero coefficients ai are constrained by the time reversal; only odd
terms in the numerator and only even terms in the denominator. Hence the correction
to χB begins from B3. Up to B3 we may write

〈M〉ext = χB + χ3B
3. (3.127)

The linear response dominates for weak magnetic field B � Bc, where Bc is
estimated as

B2
c ∼ χ/χ3. (3.128)
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Problem 3.2
The density matrix ρtot(t) in external field obeys the equation of motion

∂ρtot(t)

∂t
= i [ρtot(t),H + Hext(t)] , (3.129)

which follows from the Schrödinger equation. Instead of solving Eq. (3.129)
directly, we start from the formal solution

ρtot(t) = exp(−iHt)U(t)ρU(t)† exp(iHt), (3.130)

as obtained from Eq. (3.13). Putting the lowest-order result of U(t) given by
Eq. (3.16), we obtain

ρtot(t) = ρ + i
∫ t

−∞
dt ′ exp(−iHt)[ρ,HH

ext(t
′)] exp(iHt), (3.131)

up to O(Hext). Using the identity

TrA [ρ,HH
ext] = Trρ [A,HH

ext], (3.132)

for any given observable A, we obtain Eq. (3.19). The derivation is of course
equivalent to the one employed in the text.

Problem 3.3
We evaluate the Kubo formula involving the z-component of the magnetic moment
with wave number q:

χ0(q, ω) = i
∫ ∞

0
dt〈[MH

q (t),M
H−q(0)]〉 exp(iωt), (3.133)

where

Mq = −μB
1√
V

∑

kσ

σc
†
kσ ck+qσ . (3.134)

The time dependence for free electrons is made explicit as

c
†
1(t)c2(t) = exp [i(ε1 − ε2)t] c

†
1c2, (3.135)

where use has been made of c†
1(t) = c

†
1eiε1t with eigenenergy ε1, and its Hermitian

conjugate. Furthermore, the commutator is decomposed as

[c†
1c2, c

†
2c1] = c

†
1[c2, c

†
2c1] + [c†

1, c
†
2c1]c2 = c

†
1c1 − c

†
2c2. (3.136)
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At this stage, the statistical average is obtained with use of the Fermi distribution
function f (ε1) ≡ f1 as 〈c†

1c1〉 = f1. Hence we obtain as a part in χ(q, ω),

χ12(z) = i
∫ ∞

0
dt exp [i(ε1 − ε2)t] (f1 − f2) = f2 − f1

z − ε2 + ε1
. (3.137)

By summation over spin and momentum, it is straightforward to obtain the
dynamical susceptibility given by Eq. (3.27).

Problem 3.4
With imaginary time, the quantity that corresponds to Eq. (3.135) is evaluated as

〈c†
1(τ )c2(τ )c

†
2c1〉 = exp [τ(ε1 − ε2)] f1(1 − f2), (3.138)

where the Matsubara index M has been omitted for creation and annihilation
operators. We have used the fact that the average with indices 1,2 can be taken
independently, and that the operator for an eigenstate depends on imaginary time as

c
†
1(τ ) = exp(τH)c

†
1 exp(−τH) = c

†
1 exp(τε1). (3.139)

Corresponding to Eq. (3.137), the Matsubara version is given by

χ12(iνn) =
∫ β

0
dτ exp [(ε1 − ε2 + iνn)τ ] f1 (1 − f2)

= exp [β(ε1 − ε2)] − 1

iνn − ε2 + ε1
f1(1 − f2) = f2 − f1

iνn − ε2 + ε1
, (3.140)

where the last equality is due to the property exp(βε)f (ε) = 1 − f (ε). Equa-
tion (3.140) corresponds to analytic continuation of z in Eq. (3.137) to even
Matsubara frequencies iνn. Hence the result gives an example to show the validity
of general formula given by Eq. (3.50).

Problem 3.5
In the spectral function

IXY (ω) = Av
n

∑

m

XnmYmn[1 − exp(−βω)]δ(ω − ωmn), (3.141)

X, Y are taken as X = S+ = Sx+iSy and Y = S− = Sx−iSy with S being the spin
1/2 operator. Then |n〉 = |↑〉 and |m〉 = |↓〉 are the only states that give finite matrix
elements (= 1) for X and Y. Provided the temperature T = 1/β is much larger than
the Zeeman splitting |ωmn|, we may take 1 − exp(−βω) ∼ βω and obtain

χ+−(z) =
∫ ∞

−∞
dω

I+−(ω)
ω − z

−→
z=0

1

2
β, (3.142)
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which implies the Curie law χ⊥ = χxx = χyy = β/4 since χ+− = χxx + χyy .
We interpret the result as due to the ergodicity recovered by the small but nonzero
precession frequency ωmn.

Problem 3.6
The projection operator is modified as

P ≡
∑

ij

|Xi〉(χ−1)ij 〈Xj |, (3.143)

where the matrix χ is composed of elements χij = 〈Xi |Xj 〉. Then the matrix C(z)

for the relaxation function is obtained as

C(z) = iχ [z − Ω + iΓ (z)]−1, (3.144)

where the matrices Ω and Γ (z) are composed of elements:

Ωij =
∑

l

(χ−1)il〈Xl |L|Xj 〉, (3.145)

Γij (z) =
∑

l

(χ−1)il〈QẊl | i

z − QLQ |QẊj 〉. (3.146)

If the Hamiltonian is invariant under time reversal, we obtain Ωij = 0 as long
as all Xi’s have the same parity under time reversal. Namely, the inner product of
|Xi〉 and L|Xj 〉 with different parities vanishes. If the external magnetic field Bz

along the z-axis is finite and fixed, the Hamiltonian Hext = −MzBz breaks the time
reversal. The magnetic moment M = gμBS has the time derivative proportional to
[Sz,S]. Considering the component Sj , we obtain as a part of Ωij :

〈Si |[Sz, Sj ]〉 = iεzjk〈Si |Sk〉, (3.147)

with εzjk being the completely antisymmetric unit tensor. The RHS is finite with
i = x, j = y and i = y, j = x. The finite inner product contributes to Ωxy = −Ωyx

which describes the precession frequency.

Problem 3.7∗
With the perturbation H1 = JS · s, we obtain

[Si,H1] = iJ
∑

jk

εijkSksj . (3.148)

To derive Γ (z) we need to evaluate

〈Sk(τ )sj (τ )Sksj 〉0 = 1

3
S(S + 1)〈sj (τ )sj 〉0. (3.149)
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The sj part is Fourier transformed as

〈[sj , sj ]〉0(iνn) = 1

4N2

∑

k,k′

f (εk) − f (εk′)

iνn − εk + εk′
, (3.150)

referring to Eq. (3.140). Then in Γ (z), as given by Eq. (3.75), we deal with the
following quantity

1

N2

∑

k,k′

f (εk) − f (εk′)

−εk + εk′
· 1

z − εk + εk′
. (3.151)

With z = i0+, the real part vanishes by double summation and the imaginary part
becomes

− π

N2

∑

k,k′
δ(−εk + εk′)

(
−∂f (εk)

∂εk

)
= −πρc(μ)

2. (3.152)

Substituting χM = C/T , we obtain Eq. (3.77).

We proceed to the conductivity σ(q, z) in the small |q| limit. The static current
susceptibility is derived by the formula

〈Jq |J−q〉 = 〈[Jq , J−q ]〉(z = 0), (3.153)

which leads to the equality in Eq. (3.82). In the limit q → 0, we obtain

1

V 2

∑

k

Δ(k − k′ + q)kzk
′
z

f (εk) − f (εk′)

εk′ − εk

= 1

3
k2

Fρc(εF), (3.154)

with ρc(εF) = 3n/(2εF). Then we obtain the rightmost result in Eq. (3.82). Note if
one works with q = 0 from the beginning, singular contribution due to [J0,H0] = 0
leads to wrong result instead of Eq. (3.154).

On the other hand, we can set q = 0 in dealing with J̇q since the correction is
negligible for q → 0. Noting J̇0 is contributed by H1 only, we obtain

[J0,H1] = ni
∑

k,k′
(kz − k′

z)u(k − k′)c†
k
ck′ . (3.155)

Proceeding in the same way as in Eq. (3.150) we obtain Eq. (3.83). The next step
is also the same as in Eq. (3.151). Instead of Eq. (3.152), however, we now have
to average over the solid angles Ωk and Ωk′ . In the case of spherically symmetric
potential u(r) = u(r), only the direction of k′ relative to that of k matters. Hence
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we may take the z-direction along k, and obtain

∂

i∂ω
〈[J̇0, J̇0]〉0(ω + i0+)

∣∣∣∣
ω=0

= 2πe2ni

3m
ρc(εF)

2k2
F

∫
dΩk′

4π
|u[kF(ẑ − Ω̂k′)]|2(1 − cos θk′), (3.156)

where ẑ and Ω̂k′ are the unit vector along the z-axis and k′, respectively, and θk′ is
the polar angle along k′. Combining with Eq. (3.82), we obtain Eq. (3.84).

Problem 3.8
We take a (classical) stochastic variable x, and consider the moments 〈xn〉 and
cumulants 〈xn〉c with n = 0, 1, . . .. As a convenient device, we employ the
generating function G(q) defined by

G(q) = 〈exp(iqx)〉 =
∞∑

n=0

(iq)n

n! 〈xn〉. (3.157)

Correspondingly, the n-th cumulant 〈xn〉c is defined by

lnG(q) =
∞∑

n=1

(iq)n

n! 〈xn〉c. (3.158)

If the variable x has the Gaussian distribution with the average x̄ and the variance
σ 2, the generating function is derived in the closed form

G(q) =
∫ ∞

−∞
dx√
2πσ

exp

(
− 1

2σ 2 (x − x̄)2 + iqx

)
= e−σ 2q2/2+iqx̄ . (3.159)

By taking the logarithm of both sides in Eq. (3.159), and compare with Eq. (3.158),
we obtain immediately 〈x〉c = x̄, 〈x2〉c = σ 2, and 〈xn〉c = 0 for n > 2. On
the other hand, all moments 〈xn〉 remain finite for the Gaussian distribution. These
moments are derived explicitly by expansion of the rightmost side of Eq. (3.159) in
terms of q, and compare with Eq. (3.157).

Problem 3.9
Let us consider first the case τ > 0. We replace the summation by integral over the
complex energy z as

T
∑

n

exp(iεnτ)

iεn − ε
=
∫

C

dz

2π i

exp(zτ )

z − ε
f (z), (3.160)
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Fig. 3.3 The integration path
C around the imaginary axis
picks up the poles of f (z). It
is deformed along both
directions of the real axis
surrounding a pole at z = ε

z

C

C

Fig. 3.4 Integration path for
the retarded Green function.
The dashed semicircle is for
the case t < 0, while the solid
semicircle for t > 0

t < 0

t > 0

z

k

where f (z) = 1/(eβz +1) has first-order poles at Matsubara frequencies z = iεn on
the imaginary axis of z. The integration contour C is shown in Fig. 3.3, which runs
originally around the imaginary axis to pick up all poles of f (z), but is continuously
deformed so that it runs parallel to the real axis in both directions. The deformed
contour picks up a pole at z = ε, and the integral is convergent since f (z) exp(zτ )
goes to zero exponentially at z → ±∞ as long as 0 < τ < β.

In the second case of τ < 0, we use 1 − f (z) = eβz/(eβz + 1) instead of f (z)
in Eq. (3.160). We have the same poles as the first case, and the integral is again
convergent since (1−f (z)) exp(zτ ) goes to zero exponentially at z → ±∞ as long
as −β < τ < 0. Hence we obtain Eq. (3.104) by picking up the pole on the real
axis in both cases.

Problem 3.10
The analytic continuation iεn → z gives the retarded Green function in the upper
half plane, and the advanced Green function in the lower half plane. The inverse
Fourier transform of (z − εk)

−1 is performed by the integral over z along the
horizontal line slightly above the real axis. The integration path is illustrated in
Fig. 3.4. If t < 0, the integration path along the real axis can be supplemented by a
large semicircle in the upper half plane. The contribution from the semicircle tends
to zero as the radius goes to infinity, and the integral along the closed loop also
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gives zero because there is no singularity inside. On the other hand, for t > 0, the
large semicircle must be taken in the lower half plane to have the convergent (zero)
contribution from the semicircle. The closed loop in this case includes a pole at
z = εk , and gives a finite result. Thus we obtain

∫ ∞+i0+

−∞+i0+

dz

2π

e−izt+δt

z − εk
= −iθ(t) exp(−iεkt) = GR

k (t). (3.161)

This result from Eq. (3.161) is of course the same as the direct calculation using
Eq. (3.111).
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Chapter 4
Fermi Liquid Theory

Abstract The Fermi liquid theory constructed by Landau efficiently describes
strongly correlated fermions in terms of small number of parameters. The core of the
theory is the concept of quasi-particles. This chapter explains how the Fermi liquid
theory accounts for interaction effects taking examples such as specific heat and
magnetic susceptibility. Also discussed is the dynamical response of Fermi liquid
against slowly varying external fields.

4.1 Quasi-Particles and Their Distributions

Let H0 be the Hamiltonian for N electrons without electron–electron interactions,
and φn be the n-th eigenstate with the eigenenergy En. The Schrödinger equation
reads

H0φn = Enφn. (4.1)

Each many-electron state φn of free electrons is constructed by the Slater determi-
nant of one-electron states. We assume the translational and rotational symmetries
in the system. Then each one-electron state is specified by the momentum p and
spin σ . Hence the distribution npσ (=0, 1) of one-electron states, determines the
many-electron state.

For discussing the interaction effect, the electron–electron interaction Hamilto-
nian λH1 is scaled by the parameter λ which controls the strength in the range
0 ≤ λ ≤ 1. The many-body state Φn corresponding to λ = 1 develops continuously
from φn. If there is no level crossing in between, this process is called adiabatic by
analogy with thermodynamic process. The eigenenergy Ẽn for H = H0 +H1 is also
connected continuously with En as a function of λ.

For a small system, the interval between neighboring En can be much larger
than the characteristic magnitude of H1. Then it is obvious that no level crossing
takes place in the course of increasing λ. The bold assumption taken by Landau
[1–3] is that even though the interval of En is much smaller than H1, the adiabatic
continuity holds from En to Ẽn and from φn to Φn. For example, if there is a phase
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transition at zero temperature for certain λ < 1, this means a level crossing of the
ground states. Then the adiabatic continuity certainly breaks down. Even without a
phase transition, the level crossing occurs in many realistic systems. For example,
the Fermi surface in metals is generally not spherical, and the shape depends on the
strength of the interaction. This means that level crossings actually take place as
a function of λ. In order to avoid such complexity in anisotropic systems, we first
confine the discussion to the isotropic system with the spherical Fermi surface as is
realized in liquid 3He.

If Landau’s assumption is valid for the one-to-one correspondence between Φn

and φn, the density matrix ρ, or the weight of each Φn, is completely specified
by the distribution function {npσ } of the non-interacting system. Hence the exact
excitation energy δE is regarded as a functional of {npσ }. In the interacting system,
the excitation that corresponds to the change of particular npσ is called the quasi-
particle. The concept is valid for all excitation energies as long as the adiabatic
continuation holds. However, the actual utility is confined to the range of low
excitation energies.1 Namely, if the change δnpσ from the ground state is small,
δE can be expanded in terms of δnpσ as follows:

δE =
∑

pσ

εpσ δnpσ + 1

2

∑

pp′

∑

σσ ′
f (pσ,p′σ ′)δnpσ δnp′σ ′ + · · · , (4.2)

where εpσ is interpreted as energy of a quasi-particle measured from the Fermi level
μ. This energy is in general different from that of the non-interacting particle with
the same quantum numbers. Without magnetic field, εpσ is independent of spin σ .
The function f (pσ,p′σ ′) describes interaction between quasi-particles.

Note that two terms in the RHS of Eq. (4.2) are both second order quantities with
respect to

∑
pσ |δnpσ |/N , since εpσ is also a small quantity measured from the

Fermi level. Hence, in the limit of low excitation energies, those terms which are
higher than the second order in δnpσ can be neglected. Conversely, with increasing
excitation energy, the higher order terms become relevant, and the quasi-particle
description is no longer useful.

The Fermi surface of free fermions is a sphere with radius pF. Because of the
one-to-one correspondence between Φn and φn, the Fermi surface of quasi-particles
does not change by the interaction, and the Fermi momentum remains the same
as pF. The one-to-one correspondence has a further consequence that the entropy
of the system is determined only by distribution of quasi-particles. The maximum
entropy under the constraint of given energy E and the number N of quasi-particles
is equivalent to the minimum thermodynamic potential Ω = E − μN − T S, as in

1In the original Fermi liquid theory, the quasi-particle is defined only near the Fermi level. This is
because the lifetime becomes shorter as the energy of an added or removed fermion goes off from
the Fermi level. In later development, the concept was modified so as to be consistent with real
value of εpσ in Eq. (4.2) for arbitrary p, and sometimes called the “statistical” quasi-particle [4].
We have mainly followed the latter description here.
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the case of free fermions. Throughout this book we take the origin of energy so as
to set the chemical potential μ = 0, unless stated otherwise. Then the stationary
condition δΩ/δnpσ = 0 gives the quasi-particle distribution as

npσ = [
exp(βεpσ ) + 1

]−1
, (4.3)

which takes the form analogous to free fermions. However, εpσ here is not a
constant but depends on temperature and interactions. We emphasize that all
interaction effects, including fluctuations of spin and charge, are implicitly taken
into account in the quasi-particle energy.

It is very convenient to parameterize f (pσ,p′σ ′) in terms of spherical harmonics
or, equivalently, Legendre polynomials. Namely, we consider two quasi-particles
with momenta p and p′ both of which have magnitude equal to pF. Then taking the
angle θpp′ between p and p′ we make the decomposition

ρ∗(μ)f (pσ,p′σ ′) =
∞∑

l=0

(Fl + σσ ′Zl)Pl(cos θpp′), (4.4)

with σ, σ ′ = ±1. Here ρ∗(μ) is the density of states for quasi-particles at the Fermi
level, as given by

ρ∗(μ) =
∑

pσ

δ(εp) = V

π2
m∗pF, (4.5)

where V is the volume of the system, taken to be unity, and m∗ the effective mass.
The dimensionless quantities Fl, Zl in Eq. (4.4) are called the Landau parameters.

Similarly, the distribution function δnpσ is decomposed by spherical harmonics
as

δnpσ = 4π

ρ∗(μ)
δ(εp)

∑

lm

δnlmσYlm(p̂), (4.6)

where p̂ represents the solid angle of p. In taking summation over a function that is
sharply peaked near the Fermi level, we can make the approximation

∑

pσ

∼ ρ∗(μ)
∫

dεp

∫
dΩ

4π
, (4.7)

where Ω is the solid angle. Furthermore using the addition theorem

Pl(cos θpp′) = 4π

2l + 1

∑

m

Ylm(p̂)Ylm(p̂
′), (4.8)
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the interaction part of the excitation energy, which is the second term in the RHS of
Eq. (4.2) is written as

δEint = 4π

2ρ∗(μ)
∑

lm

∑

σσ ′

1

2l + 1
(Fl + σσ ′Zl)δnlmσ δnlmσ ′

= 4π

2ρ∗(μ)
∑

lm

1

2l + 1

(
Flδn

2
lm+ + Zlδn

2
lm−

)
, (4.9)

where we have introduced the symmetric and antisymmetric components

δnlm+ =
∑

σ

δnlmσ , δnlm− =
∑

σ

σδnlmσ , (4.10)

with respect to spins σ = ±1.
In the presence of other quasi-particles, the energy ε̃pσ of a quasi-particle is

modified from εpσ as

δE

δnpσ
≡ ε̃pσ = εpσ +

∑

p′σ ′
f (pσ,p′σ ′)δnp′σ ′ , (4.11)

where the rightmost term is interpreted as a molecular field due to interactions.
Since the excited states are not translationally invariant in general, δnpσ may slowly
depend on r . In this case ε̃pσ (r) depends also on r , and is called the local quasi-
particle energy.

The distribution function δnpσ (r), which depends both on p and r , is an example
of the Wigner distribution. The latter is extension of the classical distribution
function in the phase space (p, r). For free fermions, it is given explicitly by

δnpσ (r) =
∑

q

〈c†
p−q/2,σ cp+q/2,σ 〉 exp(iq · r), (4.12)

where the RHS vanishes in the ground state, but can remain finite in excited states
with momentum q. Taking account of other quasi-particle excitations, we introduce
the local distribution function [2]

n̄pσ = [
exp(βε̃pσ ) + 1

]−1
. (4.13)

In terms of the deviation δn̄pσ = npσ − n̄pσ from the local equilibrium, a useful
relation

δn̄pσ = δnpσ + δ(εp)
∑

p′σ ′
f (pσ,p′σ ′)δnp′σ ′ , (4.14)
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Fig. 4.1 Distribution {npσ }
of quasi-particles in the
ground state (solid line), and
an example of 〈c†

pσ cpσ 〉 of
fermions with strong
repulsion (dashed lines). Both
distributions have a
discontinuity at the Fermi
momentum pF O

npσ

|p|pF

1

follows because of the relation between ε̃pσ and εpσ as specified in Eq. (4.11). If
the Landau parameter is positive (repulsive), the presence of other quasi-particles
leads to ε̃pσ > εpσ . This entails |δn̄pσ | > |δnpσ |, which means suppression of the
response δnpσ by the repulsion between quasi-particles. Problem 4.1 addresses the
deviation from local equilibrium for each component of the angular momentum.

It is possible to derive the Fermi liquid theory microscopically using the many-
body perturbation theory, as first carried out by Landau himself [5]. The microscopic
theory can also deal with anisotropic systems with deformable Fermi surface
[6]. The energy shift δE in Eq. (4.11) is regarded as a quasi-classical form of
the effective Hamiltonian, which is valid for particle-hole excitations with long
wavelength. Furthermore, the spectrum of quasi-particles is interpreted as the pole
of the single-particle Green function introduced in Sect. 3.7. In this context it
is instructive to compare the momentum distribution of quasi-particles and the
average 〈c†

pσ cpσ 〉 of interacting fermions. Figure 4.1 illustrates both distributions.
Suppose a case where the interaction between fermions is strongly repulsive at short
distance. Then the particles try to avoid each other at the expense of larger kinetic
energy. As a result, the momentum distribution extends beyond pF. The actual
form of distribution depends on interactions and the single-particle spectrum. In
the Hubbard model with large U , for example, 〈c†

pσ cpσ 〉 becomes almost a constant
(∼1/2) if the number of electrons is close to unity per site. As shown schematically
by dashed lines in Fig. 4.1, a signature of the Fermi liquid is the finite discontinuity
at pF. The reduction of discontinuity measures the degree of renormalization in
forming the quasi-particle. We shall discuss microscopic details of renormalization
later in Chaps. 6 and 10.

4.2 Specific Heat and Magnetic Susceptibility

As a simple application of the Fermi liquid theory, we first discuss the specific heat
in a metal which takes the form

C = γ T + βT 3, (4.15)
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at low temperatures. The first term originates from quasi-particles and the T 3 term
from lattice vibrations.2 In the Fermi liquid theory, the coefficient γ is given by

γ = π2

3
k2
Bρ

∗(μ), (4.16)

with kB the Boltzmann constant. The T -linear specific heat comes from the fact that
the entropy in the Fermi liquid, including interaction effects, is exhausted by quasi-
particle excitations in the low temperature limit. The effective mass is in general
different from the vacuum mass m0 = 9.1 × 10−28 g of an electron.

We next consider the spin susceptibility χ . The magnetization M of the whole
volume is given by

M = −μB

∑

pσ

σδnpσ , (4.17)

where μB = eh̄/(2m0c) is the Bohr magneton with the g-factor taken to be 2. In
the magnetic field B, the quasi-particle energy is shifted by μBBσ that is called the
Zeeman term. Then the deviation from the local equilibrium is simply given by

δn̄pσ = μBσBδ(εp). (4.18)

The response of the system is, however, described by δnpσ instead of δn̄pσ . The
relation between the two kinds of deviation has been given by Eq. (4.14). By
decomposition into angular momentum component (lm), the relation is described
in terms of the Fermi liquid parameters as discussed in Problem 4.1. Since the
homogeneous field only affects the l = 0 component of the angular momentum,
the magnetic susceptibility is obtained as

χ = μ2
Bρ

∗(μ)
1 + Z0

≡ χ0

1 + Z0
, (4.19)

the derivation of which is the subject of Problem 4.2.
The Landau parameter Z0 describes the isotropic exchange interaction between

quasi-particles. With negative sign, Z0 corresponds to ferromagnetic interaction. In
particular the susceptibility is divergent as Z0 → −1. This means the instability
of the paramagnetic state, which is called the normal Fermi liquid, toward a
ferromagnetic state. It may happen that spin fluctuations become very soft near the
instability toward a magnetically ordered state. In such a case, the specific heat
is influenced by spin fluctuations through the enhanced effective mass of quasi-
particles. For magnetic impurity systems, the modified Fermi liquid theory gives

2It is known that interaction between quasi-particles gives rise to a term of the form T 3 ln T , which
has been observed in liquid 3He [3], but is unobservable in most metals.
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the exact relation between the specific heat and susceptibilities for spin and charge.
The details will be discussed in Chap. 6 in relation to the Kondo effect.

4.3 Dynamical Response of Fermi Liquid

The Fermi liquid theory can describe the dynamics of the system with small
momentum q (� pF) and frequency ω (� εF ) where εF is the Fermi energy.
We introduce a slowly varying fictitious external field ϕpσ (q) that acts on a quasi-
particle with momentum p and spin σ . Here q represents the wave vector of
the external field. The deviation δn̄pσ (q) from the local equilibrium, which is
proportional to ϕpσ (q), is derived along the line of linear response theory as

δn̄pσ (q) = f (ε−) − f (ε+)
ω − ε+ + ε−

ϕpσ (q) ∼ v · q

ω − v · q
δ(εp)ϕpσ (q)

≡ Πp(q, ω)ϕpσ (q), (4.20)

where v = ∂εp/∂p, ε± = εp±q/2, and we have defined Πp(q, ω) in the second
line. Equation (4.20) is a dynamical generalization of Eq. (4.18). On the other hand,
the deviation δnpσ (q) is the response against the external field plus the molecular
field as given by

δnpσ (q) = Πp(q, ω)

⎛

⎝ϕ(p, q) +
∑

p′σ ′
f (pσ,p′σ ′)δnp′σ ′(q)

⎞

⎠ , (4.21)

which forms the integral equation for δnpσ (q). The equation is also written
symbolically in the matrix form:

(
1 − Π(q, ω)f̂

)
δn = Π(q, ω)ϕ, (4.22)

where n and ϕ are vectors, and f̂ is the matrix with momentum and spin indices.
In the static limit ω = 0, Π(q, ω)f̂ reduces to Landau parameters through
decomposition into components of spherical harmonics. Derivation of Eq. (4.22)
is the subject of Problem 4.3.

We now discuss collective excitation modes which appear as the solution of
Eq. (4.22) with the RHS set to zero. The spectrum corresponds to zero of the
determinant of the matrix in the LHS. Then finite δn is allowed as the solution even
in the absence of external fields. As the simplest example, we derive the spectrum of
a collective mode called the zero sound in a neutral Fermi liquid such as 3He. In the
case of electronic Fermi liquid, on the other hand, we have to include the long-range
Coulomb interaction in addition to the Landau parameters. We take a hypothetical
case where only F0 is finite as the Landau parameters. By angular average of the
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matrix elements, the � = 0 component is easily extracted. With the dimensionless
parameter s = ω/vq, the spectrum of the zero sound is determined by the condition

1

F0
+ 1

2

∫ 1

−1
dμ

μ

μ − s
= 1

F0
+ 1 + s

2
ln

s − 1

s + 1
= 0, (4.23)

where the term with μ = cos θ comes from Π(q, ω). Derivation of the solution to
Eq. (4.23) is the subject of Problem 4.4.

In actual metals with a non-spherical Fermi surface, the adiabatic continuity
with respect to the strength λ does not hold, since an occupied state for small λ
may become empty for larger λ, and vice versa. Nevertheless, many metals are
described reasonably well in terms of quasi-particles. Because of the crystalline
anisotropy, the Landau parameters can no longer be classified by the spherical
harmonics. Concerning the volume inside the Fermi surface, more general argument
can show that the volume is independent of interactions. We shall discuss this aspect
in Sect. 9.4.

Problems

4.1 By decomposing into components of angular momentum, derive the propor-
tionality relation between δn̄pσ and δnpσ .

4.2 Derive the magnetic susceptibility of the Fermi liquid as given by Eq. (4.19).

4.3 Derive the dynamical response in the Fermi liquid in the matrix form as given
by Eq. (4.22).

4.4 Discuss how the spectrum of zero sound is influenced by the Landau parameter
with use of Eq. (4.23).

Solutions to Problems

Problem 4.1
Equation (4.14) is decomposed into components (lm) of the angular momentum as

δn̄lmσ = δnlmσ + 1

2l + 1

∑

σ ′
(Fl + σσ ′Zl)δnlmσ ′ , (4.24)
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where no mixing occurs between different angular momenta. Each component is
further decomposed into spin symmetric and antisymmetric components as

δn̄lm+ =
∑

σ

δn̄lmσ , δn̄lm− =
∑

σ

σδn̄lmσ , (4.25)

with σ = ±1. Then Eq. (4.24) is written as

δn̄lm+ =
(

1 + Fl

2l + 1

)
δnlm+, δn̄lm− =

(
1 + Zl

2l + 1

)
δnlm−. (4.26)

If the Landau parameter for certain l is negative, the deviation δn̄lmσ from local
equilibrium induces larger (in absolute magnitude) response δnlmσ . In particular, a
multipolar fluctuation with angular momentum (l,m) is divergent if the condition
δn̄lmσ /δnlmσ = 0 is met. Namely, finite δnlmσ is generated spontaneously even
by negligible δn̄lmσ , which means negligible external field. Hence for the electric
multipole, the stability of the normal Fermi liquid requires Fl > −(2l+1). Similarly
for the magnetic multipole, the stability requires Zl > −(2l + 1).

In actual liquid helium 3He, the Landau parameter F0 becomes as large as 10
to 100 near the solidification by pressure. This means that the system becomes hard
against compression. On the other hand, an estimate Z0 ∼ −0.75 is made against the
magnetic response. This means that the system is near the ferromagnetic instability,
and the response is four times larger than that of independent quasi-particles [7].

Problem 4.2
The magnetization corresponds to the homogeneous component δn̄00− in Eq. (4.26).
Hence we obtain δn̄00− = (1 + Z0) δn00−. Since δn̄00−/B is proportional to the
density of states ρ∗(μ) of quasi-particles, we obtain Eq. (4.19) as representing
δn00−/B. By similar argument, we obtain the compressibility of the Fermi liquid
as

χ00+ = ρ∗(μ)
1 + F0

. (4.27)

Problem 4.3
With use of Πp, Eq. (4.20) is symbolically written as δnp = −Πpϕp. According to
Eq. (4.21), ϕp in the RHS is modified to add f (p, k), which is then moved to the
LHS. Then we obtain Eq. (4.22).

Problem 4.4
Equation (4.23) is written as 1/F0 = f (s), in terms of the function f (s) defined by

f (s) = (s/2) ln[(s + 1)/(s − 1)] − 1. (4.28)
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Fig. 4.2 The real part of the
function f (s)

0

Re f
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1

−1

1

Figure 4.2 shows the real part of f (s). The imaginary part Imf (s) = πs/2, which
is not shown in the figure, is obviously finite for 0 < s < 1. If we have F0 < −1,
the Fermi liquid becomes unstable because the compressibility becomes negative as
shown in Eq. (4.27).

As evident from the figure, two real solutions for s exist for F0 > 0. The
solution with s > 1 corresponds to larger energy than the upper limit of particle-
hole excitation continuum, resulting in infinite lifetime. This collective excitation is
called the zero sound. In the limit of large F0 � 1, we may expand the logarithm
assuming s � 1. Then we obtain s ∼ √

F0/3. In this way the velocity of the
zero sound increases with increasing F0. As F0 decreases to F0 → 0, the solution
corresponds to the infinitely large logarithm. This gives s → 1, which connects
smoothly to individual quasi-particle excitations.

On the other hand, the solution for −1 < F0 < 0 corresponds to complex s. This
means a collective mode in the continuum of individual particle-hole excitations.
The resultant finite lifetime is called the Landau damping. It is impossible to derive
the solution from Fig. 4.2. Finally, with F0 → −1, the solution corresponds to
s → 0. This means that the velocity of the collective mode becomes zero just before
the collapse against pressure takes place.
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Chapter 5
Superconductivity

Abstract Superconductivity derives from a kind of two-electron bound state called
the Cooper pair. Many Cooper pairs are multiply overlapping with one another, in
contrast with an ordinary bound state such as hydrogen molecule. Then at any spatial
point one cannot pinpoint a pair. This feature is related to the tiny binding energy as
compared with the Fermi energy. This chapter explains basic mechanisms leading
to formation of the Cooper pair. The discussion includes some recent development,
concerning new types of superconductors with high transition temperatures.

5.1 Breakdown of Gauge Symmetry

We shall deal with Cooper pairs which are regarded as coherent superposition
of many bound states with a definite quantum mechanical phase. The phase is
a variable conjugate to the number of particles in the system, which is usually
conserved by the gauge symmetry. Hence the definite phase means spontaneous
breakdown of the gauge symmetry, accompanied by a phase transition. In the
superconducting state, the number of electrons, and hence the number of Cooper
pairs, are fluctuating. On the other hand, in the hypothetical strong-coupling limit
where the binding energy is larger than the Fermi energy, the Cooper pair goes
over to an ordinary molecule made up of two electrons. These molecules do
not necessarily realize superconductivity, unless the gauge symmetry is broken
spontaneously. Namely, presence or absence of the coherent phase separates the
Cooper pair from the two-electron molecule. For simple understanding of the gauge
symmetry, we start from the coherent states in the harmonic oscillator and then
in Bose particles. It is straightforward to construct the Cooper pair with these
preliminaries.

The Hamiltonian of a harmonic oscillator is given by

H = ω

(
a†a + 1

2

)
, (5.1)
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where a† is the creation operator which changes an eigenstate |n〉 to another one as

a†|n〉 = √
n + 1|n + 1〉, (5.2)

with n = 0, 1, 2, . . . and |0〉 is the ground state. Hence the operators a, a† obey the
bosonic commutation rule [a, a†] = 1. In terms of arbitrary complex number z, a
coherent state |z) is constructed by superposition of |n〉 as

|z) = e−|z|2/2
∞∑

n=0

zn√
n! |n〉 = e−|z|2/2 exp

(
za†)|0〉, (5.3)

with the normalization property (z|z) = 1. The coherent state is an eigenstate of a
such that

a|z) = z|z), (5.4)

as will be demonstrated in Eq. (7.11). This leads to the property (z|a|z) = z.
We proceed to the system of identical Bose particles. Let a†

0, a0 represent the
creation and annihilation operators for the wave number k = 0. On the analogy
of harmonic oscillators, superposition of states with different numbers of particles
having k = 0 gives a coherent state |z). Specifying the occupation numbers with
different wave vectors by {nk 	=0}, the state Ψ for the whole system is given by

Ψ = |z) ⊗ |{nk 	=0}〉 = e−|z|2/2 exp
(
za

†
0

)|0, {nk 	=0}〉, (5.5)

where the details of {nk 	=0} are not relevant. By choosing z = √
N exp(iθ), we

obtain

〈Ψ |a0|Ψ 〉 = √
N exp(iθ), (5.6)

〈Ψ |a†
0a0|Ψ 〉 = N, (5.7)

which show that the phase of Ψ is fixed at θ , and that the expectation value of the
particles with wave number 0 is given by N . The case with N � 1 is referred to the
Bose condensed state. The state with wave number 0 has the lowest kinetic energy,
and macroscopic number of Bose particles can occupy this state. The condensation
does not need interactions between bosons, and occurs even for ideal bosons.

In the Hamiltonian, ordinary terms such as kinetic energy and two-body interac-
tion do not change the total number of particles in the system. Namely, the number of
particles is a conserved quantity, and the relevant symmetry is the gauge symmetry.
The simplest example of the gauge invariance is to take an arbitrary state i and
perform the unitary transformation

ai → ai exp(iφ), a
†
i → a

†
i exp(−iφ).
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The change of phase leaves the operators such as a
†
i aj and a

†
i aj a

†
l am remain

the same, provided φ is common to all states i. On the other hand, the state Ψ

constructed by Eq. (5.5) is not invariant under the phase change, since different
number of particles are contributing to the state, with N being their average. Hence
a state specified by the phase φ as in Eq. (5.6) breaks the gauge symmetry. If the
ground state corresponds to such state, the gauge symmetry in the Hamiltonian is
not reflected in the state. This is an example of the spontaneous symmetry breaking.

Suppose that a Bose condensed state, regarded as a liquid, is moving as a whole
with a velocity smaller than the minimum velocity v of excitations in the liquid.
Then the moving liquid cannot slow down while conserving the total energy and
momentum, and becomes a superfluid. This was the original argument by Landau
[1] for the superfluidity. In the case of free bosons with finite mass, the kinetic
energy is proportional to q2, and the minimum velocity goes to zero as q → 0.
In the presence of repulsive interaction between the bosons, on the other hand, the
lowest velocity becomes finite because a collective excitation called the phonon
dominates the lowest excitations. It can be shown that the excitation energy ω starts
as ω = v|q| for small wave vector q [2].

According to the Bardeen–Cooper–Schrieffer (BCS) theory [3], the supercon-
ducting ground state is a coherent state of electrons. Since each electron obeys the
Fermi statistics, the coherent state is formed by bound electron pairs which behave
as a kind of bosons. The explicit form of the BCS state is given in terms of real
parameters uk, vk , and φ as

ΨBCS =
∏

k

[
uk + vke

iφc
†
↑(k)c

†
↓(−k)

]
|0〉, (5.8)

where c†
↑(k) (≡ c

†
k↑) represents the electron creation operator, and |0〉 is the vacuum

with no electrons. The angle φ is independent of k, and corresponds to a phase of
the many-electron coherent state. Derivation of the norm of ΨBCS is the subject of
Problem 5.1. As shown in Eq. (5.94), the normalization requires u2

k + v2
k = 1. As a

special case, the ground state of the free fermions is described by taking

uk = θ(|k| − kF ), vk = θ(kF − |k|), (5.9)

with ukvk = 0. In this case, the total number is fixed and φ is irrelevant.
In the case of ukvk 	= 0, on the other hand, the total number of electrons is

fluctuating. Namely, we obtain by straightforward calculation

〈ΨBCS|c↓(−k)c↑(k)|ΨBCS〉 = ukvke
iφ, (5.10)

〈ΨBCS|c↑(k)†c↑(k)|ΨBCS〉 = 〈ΨBCS|c↓(−k)†c↓(−k)|ΨBCS〉 = v2
k. (5.11)

Equation (5.10) shows that ukvk 	= 0 is necessary for the coherent state. For each
(k, σ ), ΨBCS is a superposition of occupied and empty states, with the weight v2

k
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kF |k|
0

1
v2k u2

k

Fig. 5.1 Illustration of the parameters u2
k

and v2
k

corresponding to the BCS state of electrons

for the occupied state. As long as ukvk 	= 0, the average occupation number v2
k

is neither 0 nor 1. The kinetic energy increases by the superposition since the
momentum distribution deviates from the step function that gives the minimum
kinetic energy. If the interaction energy gains more by the superposition, however,
the bound pair of electrons is favored. The origin of such interaction energy will
be discussed in the next section. Figure 5.1 illustrates an example of u2

k and v2
k in

the BCS state. The momentum range of deviation from the step function becomes
narrower as the size of the pair wave function becomes larger. The corresponding
energy gain gives a measure of transition temperature, which will be quantified later
in Sect. 5.3.

5.2 Attractive Interaction Mediated by Phonons

Since electrons are negatively charged, they feel the mutual Coulomb repulsion.
Then it may appear unlikely that two electrons make a pair. There are several
mechanisms to overcome the repulsion, leading finally to effective attraction. In
the BCS theory, the origin of the attraction is ascribed to the electron–phonon
interaction, which is the most important and well-established mechanism. Inspired
by the success of the BCS theory, other mechanisms have been searched for, and
prove to be effective in superfluid 3He with strong hard-core repulsion among 3He
atoms. We shall discuss an alternative mechanism from Sect. 5.4, and especially
in Sect. 5.9 in relation to the high-temperature superconductivity in Cu oxides and
Fe pnictides/chalcogenides. Here pnictides mean a family of compounds including
group V elements such as As, and chalcogenides mean those including group VI
elements such as Se.

Let us first explain the phonon mechanism of attraction. We use the effective
Hamiltonian formalism, which has been discussed in Chap. 1. Because of the
screening effect in metals, the electron–phonon interaction can be regarded as a
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local interaction. At position r , the interaction is given by Cρ(r)∇ · u(r) where C

is the coupling constant, u(r) is the lattice displacement, and ρ(r) the density of
electrons. Here we have considered only the longitudinal phonons for simplicity,
which emerge by quantization of u(r). The quantized form is given by Eq. (7.6) in
Chap. 7. In terms of creation and annihilation operators b

†
q , b−q of phonons, and

c†
σ (k), cσ (k + q) of electrons which compose the density fluctuation, we obtain the

interaction Hamiltonian

H ′ = 1√
N

∑

q

αq

(
b†
q + b−q

)∑

kσ

c†
σ (k)cσ (k + q), (5.12)

where N is the number of lattice sites in the system and

αq = Cq/
√

2Mωq (5.13)

is the interaction coefficient with q = |q|. Here M is the mass of the unit cell of
the lattice, and ωq is the frequency of the phonon, which is assumed to be isotropic.
In more general cases including transverse or optical phonons, the interaction αq
should be modified. However, the form Eq. (5.12) remains the same.

As the model space for the effective Hamiltonian, we take the one where the
electron–phonon interaction is absent. By proper renormalization procedure, the
low-energy levels for the original system are reproduced by inclusion of an emergent
effective interaction between electrons, which we now derive. The unperturbed
Hamiltonian is taken as H0 = He + Hph where He and Hph describe the non-
interacting electrons and phonons, respectively. According to the general framework
in Chap. 1, the effective Hamiltonian is constructed as

Heff = PH0P + PH ′ 1

E0 − H0
QH ′P + O(H ′3), (5.14)

where P is the projection operator of our model space, and E0 is the ground state
energy of H0. We consider the weak-coupling case where terms of O(H ′3) are
safely neglected. The second term in the RHS represents the effective interaction
Veff, where the denominator is the difference of energies between ground and
intermediate excited states. With simplified notation of the indices, we obtain

Veff = 1

2N

∑

1,2,3,4

δ(1 + 3, 2 + 4)|αq |2
(

1

ε2 − ε1 − ωq

+ 1

ε4 − ε3 − ωq

)
c

†
1c2c

†
3c4,

(5.15)

which is symmetric with respect to (1, 2) and (3, 4). The delta function represents
conservation of momentum and spin of the electron pair.

Let us consider an electron pair with (2, 4) ∼ (k ↑,−k ↓) near the Fermi surface
which is scattered into (1, 3) ∼ (p ↑,−p ↓), which involves the momentum
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transfer q = p−k. If the electron momenta are all at the Fermi surface, the positive
energy ωq gives rise to the attractive (negative) effective interaction. The negative
sign corresponds to the general consequence of second-order perturbation theory.
The situation remains qualitatively the same as long as the electronic energy is
close enough to the Fermi level with deviation smaller than ωq . Hence in Eq. (5.15),
we keep only electron pairs each of which has the zero total momentum, and put
all the individual energy εi = 0 in the energy denominator. Then we obtain the
approximate electron–electron interaction as

Vee = − 1

N

∑

1∼4

′V (1 − 2)c†
3c

†
1c2c4

= − 1

N

∑

k,p

′V (p − k)c
†
↓(−p)c

†
↑(p)c↑(k)c↓(−k), (5.16)

where V (q) = |αq |2/ωq , and the prime (′) in summation represents the restriction
that the energy associated with k and p should be smaller than the Debye frequency
ωD, which is of the order of average of ωq . In the following, we omit writing the
prime in the summation by modifying the definition of V (p − k) so that it vanishes
out of the restricted range.

5.3 Mean Field Approximation

The mean field approximation becomes more accurate as the number Nc of particles
forming the mean field becomes larger, since the fluctuation relative to the mean
field is proportional to 1/

√
Nc. The BCS superconductor is the best example of the

accurate case with Nc � 1, which will be demonstrated at the end of this section.
The mean field by these Cooper pairs is called the pairing field. The mean field
approximation consists of the following replacement in Eq. (5.16):

c
†
3c

†
1c2c4 → 〈

c
†
3c

†
1

〉
c2c4 + c

†
3c

†
1〈c2c4〉 − 〈

c
†
3c

†
1

〉〈c2c4〉. (5.17)

The bracketed quantities represent the pairing field, which is zero if the gauge
symmetry is preserved. In other words, the finite average requires the coherent state
such as the BCS state in Eq. (5.10). On the other hand, we neglect terms such as
〈c†

1c2〉 which play the major role in the Hartree–Fock approximation in Sect. 2.2.
Then Vee in Eq. (5.16) is modified in the mean field approximation as

VBCS =
∑

k

[
Δ(k)∗c↓(−k)c↑(k) + Δ(k)c

†
↑(k)c

†
↓(−k) − Δ(k)

〈
c

†
↑(k)c

†
↓(−k)

〉]
,

(5.18)
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where the gap function Δ(k) is defined by

Δ(k) = 1

N

∑

p

V (k − p)〈c↑(p)c↓(−p)〉. (5.19)

Together with the Hamiltonian for the kinetic energy

He =
∑

kσ

εkc
†
σ (k)cσ (k), (5.20)

the BCS Hamiltonian is given by HBCS = He + VBCS. Since each momentum
pair (k,−k) is independent of other pairs, HBCS can be diagonalized for each
momentum pair. The diagonalization can be performed conveniently in terms of
the two-component field ψ(k) defined by

ψ(k) ≡
(
c↑(k), c†

↓(−k)
)T ≡ (

c↑(k), h↑(k)
)T

, (5.21)

where the upper index T denotes the transpose of a vector or matrix, and h↑(k)
represents the annihilation operator of a hole. Each component in ψ obeys the
fermionic anticommutation relation. Since the kinetic energy of the hole is given
by −ε−k , we obtain the compact expression1

HBCS =
∑

k

ψ†(k)

(
εk Δ(k)

Δ(k)∗ −ε−k

)
ψ(k) ≡

∑

k

ψ†(k)hBCS(k)ψ(k). (5.22)

Diagonalization of hBCS(k) in Eq. (5.22) is the subject of Problem 5.2. According
to Eq. (5.101), hBCS becomes diagonal in terms of the new two-component field

ψ̃(k) = (α(k), β(k))T

which is related to ψ(k) by the unitary transformation

ψ̃(k) =
(

uk −e−iφvk

eiφvk uk

)
ψ(k). (5.23)

1 The two-component operator ψ(k) annihilates either an electron or a hole with spin up, the latter
of which means creation of a spin-down electron. On the other hand, the hole creation operator in
ψ†(k) actually annihilates an electron with spin down. Hence bilinear combinations of ψ†(k) and
ψ(k) as in Eq. (5.22) are sufficient for describing the singlet pairing with up and down spins. For
other types of pairing, however, the two-component operator is not sufficient. A convenient device
for a general case is the four-component field to be defined by Eq. (5.62).
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The eigenvalues of hBCS are given by E±(k) = ±
√
ε2
k + |Δ(k)|2 for α(k) with the

+ sign, and β(k) for the − sign.
The operators α(k), β(k) represent annihilation of quasi-particles, which are

superposition of electrons and holes. The transformation (5.23) is called the
Bogoliubov transformation. Note that the quasi-particle here has a different meaning
from that in Fermi liquids, and is sometimes referred to as the Bogoliubov quasi-
particle.

At zero temperature, all β states are occupied and all α states are empty. It
is possible to reconstruct ΨBCS by successive operation of β(k)†α(k) to vacuum.
Explicit construction is the subject of Problem 5.3. At finite temperature, each quasi-
particle with energy E populates according to the Fermi distribution function f (E).
Namely, we obtain

〈α†(k)α(k)〉 = f (E+(k)), (5.24)

〈β†(k)β(k)〉 = f (E−(k)) = 1 − f (E+(k)). (5.25)

These populations determine the pairing amplitude as

〈c↑(p)c↓(−p)〉 = Δ(p)

2E+(p)

[
〈β†(p)β(p)〉 − 〈α†(p)α(p)〉

]
. (5.26)

Using the relation 1 − 2f (E) = tanh( 1
2E/T ) between the Fermi distribution

function and the hyperbolic function, we obtain from Eqs. (5.19) and (5.26)

Δ(k) = 1

N

∑

p

V (k − p)
Δ(p)

2E+(p)
tanh

E+(p)
2T

, (5.27)

which is called the gap equation. The superconducting state has a self-consistent
solution with Δ(p) 	= 0.

The non-linear integral equation (5.27) can be solved only numerically in
general. However, in the special cases at T = 0 and at the transition temperature
T = Tc, it can be solved analytically. As temperature increases, |Δ(p)| becomes
smaller and eventually vanishes at Tc. Since we have E+(p) → |ε(p)| at Tc, the
gap equation becomes a linear integral equation for Δ(k). In terms of the function

Π(p) = 1

2ε(p)
tanh

ε(p)

2T
, (5.28)

the gap equation (5.27) reduces to

Δ(k) = 1

N

∑

p

V (k − p)Π(p)Δ(p). (5.29)
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At T = Tc, there is a nontrivial solution for Δ(k), provided Tc 	= 0. Note that Δ(k)

is infinitesimal at Tc, which is not explicit in Eq. (5.29).
Let us focus on the special solution corresponding to the s-wave pair. Then

Δ(p) is independent of the direction p̂, and the summation over p in Eq. (5.29)
is converted to the energy integration with use of the density of states ρ(ε). If the
density of states varies only slightly within the range of ±ωD around the Fermi
level, one may use the constant ρ(μ) in the energy integration. The |p|-dependence
in Δ(p) can also be neglected in this energy range. Let us first derive the density of

states ρBCS(E) of quasi-particles. With E±(k) = ±
√
ε2
k + Δ2 we obtain

ρBCS(E) = 1

2

∑

k,±
δ(E − E±(k)) = ρ(μ)

|E|√
E2 − Δ2

, (5.30)

for |E| > Δ, and zero otherwise. Here Δ = Δ(T ) is the energy gap at temperature
T . Note that ρBCS(E) is divergent at E = ±Δ, and tends to ρ(μ) as |E| � Δ.

Next we derive the BCS formula for Tc. Discarding the common factor Δ on
both sides of Eq. (5.29), we obtain a transcendental equation for Tc. With the
dimensionless variable x = ε/(2Tc), the integral in question is evaluated as

∫ w

0
dx

tanh x

x
= ln x tanh x

∣∣w
0 −

∫ w

0
dx ln x(tanh x)′

∼ lnw + ln
4

π
+ γ, (5.31)

with w = ωD/(2Tc) and γ ∼ 0.577 being the Euler’s constant. In the first line of
the RHS, the upper limit w of the integral including (tanh x)′ can be safely replaced
by ∞ provided w � 1. The resultant error is exponentially small. With Eq. (5.31)
put into the gap equation, a little algebra gives

Tc � 1.13ωD exp
(
−g−1

)
, (5.32)

which is one of the most famous results in the BCS theory [3]. Here the dimension-
less constant g is given by g = 〈V (k−p)〉ρ(μ) with 〈· · · 〉 being the angular average
over k and p on the Fermi surface. Since the dependence on the coupling constant
g in Eq. (5.32) is singular around g = 0, the BCS state cannot be obtained by
perturbation theory in g. In other words, the BCS theory accounts for the collective
bound state of electrons. The bound state is possible only for attractive interaction,
which corresponds to positive sign of g. As is clear from the derivation, Eq. (5.32)
is accurate only for the weak-coupling case with Tc/ωD � 1.
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Equation (5.27) at T = 0 can also be solved for the s-wave pair. Discarding
Δ0 ≡ Δ(T = 0) on both sides and using tanh(E+/2T ) → 1, we are left with the
implicit equation

1 = g

∫ ωD

−ωD

dε
1

2
√
ε2 + Δ2

0

= g ln
[
x +

√
x2 + 1

] ∣∣∣
xD

0
, (5.33)

for xD = ωD/Δ0. Assuming the weak-coupling condition xD � 1, we obtain
another famous result of the BCS theory:

Δ0 = 2ωD exp(−g−1) � 1.76Tc. (5.34)

We can now estimate the number Nc composing the mean field as Nc ∼ nξ3

with n being the electron density and ξ the coherence length. The latter is estimated
as ξ/a ∼ εF/Δ0 in terms of the lattice constant a and the Fermi energy εF. Since
na3 ∼ O(1), we obtain Nc � 1 in the weak-coupling case ξ/a � 1.

5.4 Multiband Model

We now proceed to discuss other mechanisms of effective attraction than mediated
by phonons. Such study was first motivated by high transition temperatures in
some transition metals even though the electronic Coulomb repulsion is large. As a
possible origin for high transition temperature, the interband transfer of Cooper pairs
has been considered [4]. Namely, in terms of creation and annihilation operators for
bands A and B, the interaction is given by

HAB = JH

N

∑

k,p

A
†
↑(k)A

†
↓(−k)B↓(−p)B↑(p) + h.c., (5.35)

where the interaction constant JH is related to the exchange coupling due to the
Hund’s rule, as discussed in Sect. 1.4. Namely, the same constant JH > 0 appears in

HHund = −2JH

∑

i

SA(i) · SB(i). (5.36)

In order to understand the relation between HAB and HHund, we take the Wannier
functions wA(r), wB(r

′) localized at the origin, and represent the exchange integral
as

JH =
∫

dr

∫
dr ′wB(r)

∗wA(r
′)∗ e2

|r − r ′|wB(r
′)wA(r). (5.37)
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Γ

XM

Γ

Fig. 5.2 Examples of Fermi surfaces where the interband pair transfer can conserve the crystal
momentum

Since the Wannier function can be taken real, we may write

wB(r)
∗wA(r) = wB(r)wA(r)

∗. (5.38)

Then Eq. (5.37) assumes a form corresponding to the pair transfer from the band B
to A.

The total momentum of each pair must be preserved in the interband transfer,
which makes strong constraint on location of the Fermi surfaces. The transfer is
possible if the bands A and B have the common center for the Fermi surfaces, or
one of the Fermi surfaces has a center shifted from the other by half of the reciprocal
lattice vector. In the latter case, the transfer involves a momentum corresponding to
a reciprocal lattice vector, which is equivalent to zero as the crystal momentum.
Figure 5.2 shows an example of the Brillouin zone for the square lattice. The right
panel corresponds to Fe pnictides which have been intensively studied as a family
showing high-temperature superconductivity [6, 7].

With band indices A, B written as i, j , the gap equation including multiple energy
bands is given by

Δi(k) = 1

N

∑

p

∑

j

Vij (k − p)Πj (p)Δj (p), (5.39)

where Vij (k − p) describes the interband pair transfer for i 	= j , and corresponds
to JH in Eq. (5.35). For i = j , it reduces to the interaction within each band. We
introduce the quantities Lj and gi by

1

N

∑

p

Πj(p) = ρjLj (T ), ρiVii ≡ gi, (5.40)
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where ρi is the density of states (per site) for each band A, B. Here we have
neglected the momentum dependence in Vii . In the case of two relevant bands,
Eq. (5.39) takes the matrix form

(
1 − gALA −JHρBLB

−JHρALA 1 − gBLB

)(
ΔA

ΔB

)
= 0. (5.41)

Nontrivial solution is possible if the determinant is zero:

(1 − gALA)(1 − gBLB) − J 2
HρAρBLALB = 0. (5.42)

With JH = 0, the transition temperature Ti for the band i is determined by the
condition 1 − giLi(Ti) = 0 with gi positive. Using the relation

Li(T ) � ln (ωD/T ) , (5.43)

we obtain Ti ∼ ωD exp(−1/gi), which corresponds to Eq. (5.32) with the coefficient
1.13 approximated by 1. For finite JH, the transition temperature is always larger
than TA and TB. The demonstration is the subject of Problem 5.4.

Let us take an extreme case where the interaction consists only of the pair
transfer. Namely, gA = gB = 0. The superconductivity appears in this case
independent of the sign of JH. The transition temperature Tc is determined from
Eq. (5.42) by

1 − J 2
HρAρBLALB = 1 − J 2

HρAρB [ln(ωD/Tc)]
2 = 0. (5.44)

The magnitude of Tc is the same as a virtual single-band model with

g = |JH|√ρAρB

as the dimensionless coupling constant.
It is likely that the interband transfer plays an important role in realizing the

high transition temperature (Tc ∼ 50 K) in Fe pnictides. On the other hand,
another aspect of the interband transfer seems important in MgB2, which also
has a high transition temperature (Tc = 38 K) [8]. Namely, the strongly covalent
band B, originating from boron states, has a strong electron–phonon interaction,
and is responsible for the high Tc in MgB2. The other conduction band A, which
originates from Mg states, has another Fermi surface. Both Fermi surfaces A
and B are centered at the Γ point of the Brillouin zone, and the pair transfer is
possible between the two bands. The A band alone does not have a high transition
temperature, but the whole system becomes a high Tc superconductor with the pair
transfer. Because of rather different characters of A and B bands, superconductivity
in MgB2 is sensitive to a small amount of magnetic field and by finite temperature,
which at first sight does not match the high transition temperature.
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5.5 Renormalization of Coulomb Repulsion

The magnitude of the Coulomb repulsion between electrons is generally larger
than that of the effective attraction mediated by phonons. Nevertheless, electron
pairing can be realized because the energy range of their action is different from
each other. As the simplest model of the Coulomb repulsion, we take the Hubbard
type local interaction U > 0. In Eq. (5.39), the suffices i, j are now interpreted as
distinguishing the relevant energy range. Namely, instead of the band A, we take the
range ωD around the Fermi level. The other range up to the band edges is taken as
B. The interaction in the range A is given by gA − UρA, while in the range B by
−UρB. As long as the temperature T is low enough: T � ωD, we obtain

1

N

∑

p

ΠB(p) = ρBLB = ρB ln
D

ωD
, (5.45)

which is independent of T . Here the density of states per spin in the range B is
approximated by the average ρB, and the half of the bandwidth is written as D.
Figure 5.3 illustrates the energy dependence of the interactions.

The condition for Tc is given, by analogy with Eq. (5.42) for the two-band model,
as

0 =1 − (gA − UρA)LA − U2ρAρBLALB

1 + UρBLB

=1 −
(
gA − UρA

1 + UρBLB

)
LA ≡ 1 − geffLA. (5.46)

The result implies that the effective Coulomb repulsion is renormalized to a smaller
value. Namely, Eq. (5.46) shows

U → U∗ ≡ U/(1 + UρBLB) < U, (5.47)

Fig. 5.3 Energy dependence
of the Coulomb repulsion and
the phonon-mediated
attraction

ωD

D−D

0

U

−gA

k

−V
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which gives much decreased U∗ in the case of ωD � D with large LB. Hence even
though the bare Coulomb repulsion dominates over the attraction (gA < UρA), the
effective interaction may become gA − U∗ρA > 0 which realizes the pairing.

The reduction of the effective Coulomb repulsion is the typical example of
the renormalization. Later in Chap. 6, we discuss the scaling which is one of
the standard methods of renormalization. Problem 5.5 deals with derivation of
Eq. (5.47) by the scaling method, which may better be appreciated after the reader
finishes reading Chap. 6.

5.6 Isotope Effect

The transition temperature Tc of a simple substance depends on its isotopes in a
characteristic manner as given by

Tc ∝ M−α, (5.48)

where M is the mass of the isotope. In the phonon-mediated pairing as in the BCS
theory, the exponent is α = 1/2 because of ωD ∝ M−1/2. This result is consistent
with many metals including Hg and Zn, and gives strong support for the BCS theory.
On the other hand, in transition metals with strong Coulomb repulsion, there are
cases where α is much smaller than 1/2, or almost zero as in Ru [10].

This section discusses the isotope effect in the presence of the Coulomb
repulsion. As ωD decreases, U∗ also decreases according to Eq. (5.47). Then the
effective attraction is enhanced, which competes with the ordinary isotope effect.
Hence we expect α < 1/2 in the presence of the Coulomb repulsion. To quantify
the argument we take the logarithmic derivative of Tc = ωD exp(−1/g), and obtain

δTc/Tc = δωD/ωD + g2δg. (5.49)

In contrast with the original BCS theory with δg = 0, the situation for g = geff in
Eq. (5.46) is different. A little manipulation gives

δTc

Tc
= δωD

ωD

[
1 −

(
U∗ρA

gA − U∗ρA

)2
ρB

ρA

]
, (5.50)

which leads to the exponent in Eq. (5.48) as

α = 1

2

[
1 −

(
U∗ρA

gA − U∗ρA

)2
ρB

ρA

]
. (5.51)
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Note that α is smaller than 1/2 in general, and can even be negative. Experimentally,
negative isotope effect has been reported in Sr2RuO4 [11] for instance. It is
important to recognize that the origin of attraction is phonons even if α deviates
substantially from 1/2 as in Eq. (5.51). Thus the isotope effect alone is not sufficient
to identify the origin of pairing.

We now mention an extreme case in the context of the isotope effect. With fixed
force constant for the vibration, we obtain the relation ωD ∝ M−1/2 where M is
the mass of the atom relevant to the vibration. If conduction electrons interact with
vibrations of hydrogen, the relevant ωD can become an order of magnitude larger
than the case of elements with mass number O(102). Hence Tc may also become
an order of magnitude larger provided the coupling constant g takes a reasonable
magnitude. It has been suggested that such systems are realized in certain hydrides
under high but presently attainable pressures [12]. The hydrogen bond formed by
caged structures may contribute to realize larger g [13]. Recently, there have been
experimental reports on superconductivity with Tc ∼ 200 K in SHn (n > 2)
under 150 GPa [14], and Tc ∼ 260 K in LaH10 under 190 GPa [15, 16]. Without
application of pressure, the highest Tc reported so far is 134 K in one of the Cu oxide
superconductors [17]. In Cu oxides, electron–electron interaction plays a dominant
role in the pairing as will be discussed later.

5.7 Spin Structure of Cooper Pairs

The singlet pairing in the BCS state can be extended to more general spin structures.
This section discusses the symmetry of the Cooper pair including the triplet pairing.
For simplicity, we first deal with the spherically symmetric system such as superfluid
3He. In solids, the crystalline symmetry is lower than spherical, and moreover spin–
orbit interaction may be important. These complications will be discussed later in
Sect. 5.8.

The pairing amplitude for a general spin structure is represented by

Ψαβ

(
k̂
) = 〈cα(k)cβ(−k)〉, (5.52)

where 〈· · · 〉 denotes the statistical average. The notation k̂ means the unit vector
in the direction of k on the Fermi surface. Since the pairing energy is much
smaller than the Fermi energy, the magnitude of |k| in Eq. (5.52) is identified
as the Fermi momentum in the corresponding direction. Before dealing with the
symmetry of the pairing amplitude 〈cαcβ〉, we touch on the symmetry of 〈c†

αcβ〉,
which corresponds to the one-body density matrix. In the k-space, the density matrix
ραβ(k) = 〈c†

β(k)cα(k)〉 is parameterized as

2ραβ(k) = n(k)δαβ + m(k) · σαβ(k), (5.53)
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with use of scalar and vector components. Here the scalar n(k) represents the
occupation number, and the vector m(k) represents the spin polarization. The vector
σ consists of three components of the Pauli matrices.

By introducing the concept of charge conjugation, we can deal with the pairing
symmetry by analogy with Eq. (5.53). Namely, creation of a particle is equivalent
to annihilation of a hole with opposite momentum, spin, and charge. Practically the
annihilation operator of a spin-up hole in Eq. (5.21) is extended to spin-down case
as

h↑(k) ≡ c
†
↓(−k), h↓(k) ≡ −c

†
↑(−k), (5.54)

where the negative sign in the second equation is analogous to the time reversal of
spin down. The sign convention for hole operators leads to compact expression of
the electron pair. With use of the Pauli matrix σy , the antisymmetric unit tensor is
defined by ε ≡ iσy . Then the two components of hole operators are written as

hα(k) =
∑

β

εαβc
†
β(−k). (5.55)

The creation operator of a singlet pair is written in the new notation as

c
†
↑(k)c

†
↓(−k) − c

†
↓(k)c

†
↑(−k) =

∑

α

c†
α(k)hα(k), (5.56)

where the RHS is diagonal in spin indices, and behaves manifestly as a scalar under
spin rotation.

On the other hand, the component Sz = 1 of the triplet pair is rewritten as

c
†
↑(k)c

†
↑(−k) = 1

2

∑

αβ

c†
α(k) (σ z + 1)αβ c

†
β(−k)

= −1

2

∑

αβ

c†
α(k)

(
σx + iσy

)
αβ

hβ(k), (5.57)

with use of the relation σz+1 = − (
σx + iσ y

)
iσy . Creation of a pair with Sz = 1 in

the LHS is translated into the spin flip in the RHS. Similarly the pair with Sz = −1
is translated into the reverse spin flip by (σ x − iσy), and the pair with Sz = 0 by
2σz. Thus the type of a triplet pair in general is determined by three coefficients of
Pauli matrices which form a vector Ψ t(k̂). For example, Ψ t(k̂) ∝ (0, 0, 1)T gives
Sz = 0. Including the singlet case by Ψs(k̂), the pairing amplitude in general is
parameterized as

Ψαβ

(
k̂
) = {[Ψs

(
k̂
)+ Ψ t

(
k̂
) · σ ]ε}αβ, (5.58)
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which assumes a form analogous to the density matrix given by Eq. (5.53). In the
presence of inversion symmetry, the total spin of the pair is either 0 or 1, and
Ψs(k̂) and Ψ t(k̂) are mutually exclusive. However, in crystalline solids without the
inversion symmetry, spatially even and odd components can mix with each other.
The spin–orbit interaction, on the other hand, can mix the spin-singlet and triplet
components. Some actual systems show interesting behaviors by the mixing [18].

In the case of s-wave pairing, Ψs(k̂) is a constant independent of the direction of
k̂. More generally the singlet pairing amplitude is decomposed as

Ψs
(
k̂
) =

∑

lm

clmYlm
(
k̂
)
,

in terms of spherical harmonics. The Pauli principle requires an even value for l

since the spatial parity of the pair must be even for the singlet. For a triplet pair with
Sz = 0, the pairing amplitude has the form

Ψ t
(
k̂
) = ẑf

(
k̂
)
, (5.59)

where ẑ is the unit vector along z-axis, and f (k̂) specifies the orbital state of the
pair. As in the case of the singlet pair, f (k̂) can be expanded in terms of spherical
harmonics for isotropic systems. The Pauli principle requires now an odd value for
l. In the case of Sz = ±1, Ψ t(k̂) has the form x̂ ± iŷ in place of ẑ in Eq. (5.59). .

If the spatial symmetry is lower than spherical, the angular momentum is not
a good quantum number. The antisymmetry of the fermionic wave function still
demands that Ψs(k̂) should be an even function of k̂, and Ψ t(k̂) an odd function,
provided the inversion symmetry is present. Hence singlet and triplet pairings are
equivalently called even parity and odd parity, respectively.

We proceed to spin structure of the gap function in more detail. The matrix
element of the pairing interaction is written as 〈αβ|V (k,p)|νμ〉. Then the finite
pairing amplitude gives a mean field Δαβ(k̂), which obeys the self-consistent
equation:

Δαβ

(
k̂
) = 1

N

∑

μν

∑

p

〈αβ|V (k,p)|νμ〉Ψμν(p̂). (5.60)

Here we arrange the single-electron state as |αβ〉† = 〈βα| following the convention
described by Sect. 2. The gap function including both singlet and triplet cases is
parameterized as

Δαβ

(
k̂
) = {[D(k̂)+ d

(
k̂
) · σ ]ε}αβ, (5.61)

where the scalar D(k̂) and vector d(k̂) transform like Ψs(k̂) and Ψ t(k̂), respectively.
Conventionally d(k̂) is called the d-vector. In contrast with the real parameters
n(k̂),m(k̂) in the density matrix, D(k̂) and d(k̂) are complex numbers in general.
This is a consequence of the spontaneous breakdown of the gauge symmetry.
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In addition to the broken gauge symmetry, spontaneous breakdown may also
happen to spatial symmetry and/or time-reversal symmetry. Such breakdown has
been observed in superfluid 3He [9]. In order to deal with the pairing amplitude
most generally, we introduce the four-component field ψi(k) (i = 1, 2, 3, 4) which
forms a vector

ψ(k) = (c↑(k), c↓(k), h↑(k), h↓(k))T , (5.62)

with the hole annihilation operators defined by Eq. (5.55). It is obvious that the
components with i = 1, 3 make the charge conjugation pair which appear in the
two-component field in Eq. (5.21). The same applies to the components with i =
2, 4. In terms of the four-component field ψ(k), the Hamiltonian in the mean field
theory is represented by

H = 1

2

∑

k

∑

ij

hij (k)ψ
†
i (k)ψj (k) = 1

2

∑

k

ψ†(k)ĥ(k)ψ(k), (5.63)

where the 4 × 4 matrix ĥ = {hij } is given by

ĥ(k) =
(

εk Δ̄
(
k̂
)

Δ̄†
(
k̂
) −ε−k,

)
. (5.64)

with each component being a 2 × 2 matrix. We obtain

Δ̄
(
k̂
) = D

(
k̂
)+ d

(
k̂
) · σ , (5.65)

which is to be compared with Eq. (5.61). With four components, double counting
of each state occurs as particles and holes. The correction factor 1/2 is necessary to
compensate the double counting.

We remark that definition of the four-component field in the literature is often
different from Eq. (5.62), and is given by

(c↑(k), c↓(k), c†
↑(−k), c

†
↓(−k))T .

With this definition, Δ̄(k̂) in Eq. (5.64) should be replaced by Δ(k̂) composed of
elements in Eq. (5.61).

The eigenvalues of ĥ(k) describe the spectrum of quasi-particles. The derivation
is the subject of Problem 5.6. The result is given by

Eτσ (k) = τ

√
ε(k)2 + |D(k̂)|2 + |d(k̂)|2 + σ |w(k̂)|,

where w ≡ id × d∗ = w∗. Here τ = ±1 distinguishes the vacant and occupied
states, and σ = ±1 distinguishes the spin of the triplet pair parallel or antiparallel
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to w. The pairing is called unitary if w = 0, which is the case with time reversal
preserved. The case with w 	= 0 is called the non-unitary pairing where the spin
degeneracy is broken.

In the non-s-wave pairing, Eτσ (k) can be zero for particular values of the
momentum. The set of such momenta on the Fermi surface is called nodes. In
the case of singlet pairing, the gap energy vanishes with |D(k̂)|2 = 0, which may
happen, for example, in a d-wave pairing. In the triplet case, the node occurs along
d(k̂) = 0. It is possible for the non-unitary case that the node occurs only for a
particular spin component. For example if we have |d(k̂)|2 − |w(k̂)| = 0 for certain
k with d · d∗ = 0, the node occurs only for σ = −1.

In superfluid 3He, various types of the p-wave pairing are realized with d-vectors
given by

d
(
k̂
) ∝

⎧
⎨

⎩

x̂kx + ŷky + ẑkz, [BW]
ẑ(kx ± iky), [chiral,ABM]
ẑkz, [polar],

(5.66)

where, and in the next section, the angular component of k̂ is simply written as
kα (α = x, y, z). The first line in the RHS of Eq. (5.66) gives the BW (Balian–
Werthamer) state which is isotropic. In other words, the total angular momentum J

of the pair is zero: J = L + S = 0 where L and S are orbital and spin angular
momenta, respectively [9]. The gap function has the spherical symmetry without
nodes. The BW state is dominant in superfluid 3He and is called the B phase. The
second line in Eq. (5.66) gives the pair with Sz = 0 and Lz = ±1, which breaks
not only the spherical symmetry but the time reversal. However, it is a unitary state
with w = 0. This pairing is realized in the narrow region (A phase) of the phase
diagram of superfluid 3He, and is called the ABM (Anderson–Brinkman–Morel)
state [9], or the chiral p-state [11]. The ABM state or chiral p-state has point nodes
at kx = ky = 0. Finally the third line in Eq. (5.66) has Sz = Lz = 0, and breaks the
rotational symmetry. The pairing is called the polar state, and has nodes along the
line kz = 0.

5.8 Anisotropic Cooper Pairs

For more detailed discussion of the Cooper pair in solids, the spherical symmetry
in the previous section must be replaced by the point-group symmetry. We take
the tetragonal symmetry for a representative, which is relevant to high-temperature
superconductivity in Cu oxides and Fe pnictides/chalcogenides where singlet pairs
are formed. The tetragonal symmetry also applies to CeCu2Si2 which shows a
singlet superconductivity by electrons with very large effective mass (∼100 times
the free electron mass), and SrRu2O4 where a triplet pairing seems responsible
for superconductivity. Since these materials have a strong spin–orbit interaction,
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Table 5.1 Irreducible
representations and examples
of basis functions of an even
parity pair in the point group
D4h

Representation Basis functions

Γ +
1 (A1g) 1; k2

x + k2
y − 2k2

z

Γ +
2 (A2g) Imk4+

Γ +
3 (B1g) Rek2+

Γ +
4 (B2g) Imk2+

Γ +
5 (Eg) kzk±; kzk3±

Here k± ≡ kx ± iky and the
semicolon separate different basis
functions belonging to the same rep-
resentation. Linear combinations of
functions separated by semicolon
can also be realized

the classification in terms of singlet and triplet of spins is inaccurate. However,
classification by spatial parity is still valid.

The tetragonal point group is written as D4h, and the irreducible representations,
five in total, are listed in Table 5.1. Conventionally two main notations have been
used for irreducible representations. The first one, after Bethe, uses Γ ±

j where
j (= 1, 2, . . .) specifies a representation and ± indicates the parity. The identity
representation has j = 1, and the number increases in accordance with increasing
dimension of the representation. However, there is no systematic rule how to put
the number within the same dimension. The second one, after Mulliken, uses
A1g, B2g, E2u, etc. and is popular particularly in chemistry. The one-dimensional
representations are classified into A and B where A shows invariance of the basis
function against π/2 rotation around the z-axis, while B undergoes sign change
against the same rotation. The numbers 1,2 after A,B indicate whether the basis
function is even or odd against reflection about the yz- or zx-plane. This is
equivalent to being even or odd against π rotation around the x- or y-axis. The
number is 1 for the even basis, and 2 for the odd one. After these numbers, attached
is g (gerade in German) if the basis function has even parity, and u (ungerade)
if it is odd. On the other hand, E2u means a two-dimensional (2D) irreducible
representation with two basis functions, which are odd under space inversion. The
suffix 2 is often omitted; the rule is not so simple as that in one-dimensional
representations. Examples of basis functions are also given in Table 5.1. Note that
the basis functions are not exhaustive, since higher order polynomials are also
possible.

Let us begin with the even parity representation Γ +
1 (A1g). The corresponding

gap function is a scalar in the point group. In contrast with the spherically symmetric
case, not only the s-state with l = 0, but functions such as 1 − 3 cos2 θ = k2

x + k2
y −

2k2
z with l = 2 behave as scalar. Hence we parameterize the general scalar function

g0 as

g0
(
k̂
) = a + b

(
k2
x + k2

y − 2k2
z

)+ . . . , (5.67)
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where a, b, . . . are the real parameters. Because of the lower symmetry, components
of different angular momenta may mix. As long as the s-component is dominant
with |a| � |b|, g0(k̂) does not have nodes. In the opposite case of |a| � |b|,
dominance of the d-component may lead to nodes in g0(k̂).

We move on to another even parity representation Γ +
3 (B1g) which is relevant to

Cu oxide superconductors. The gap function is given by

D1
(
k̂
) = (

k2
x − k2

y

)
g0
(
k̂
) = Rek2+g0

(
k̂
)
, (5.68)

with k+ = kx + iky . Evidently D1(k̂) has nodes at kx = ±ky . If we take g0 = a,
D1(k̂) reduces to the d-state. Hence the pair in Cu oxide is usually called the d-wave
pair. Another d-wave pair is possible with the Γ +

4 (B2g) representation. The basis
functions are given by

D2
(
k̂
) = 2kxkyg0

(
k̂
) = Imk2+g0

(
k̂
)
, (5.69)

which have nodes at kx = 0 and ky = 0. These nodes correspond to π/4 rotation of
the nodes of D1(k̂). Table 5.1 includes other possible representations of even parity
pairing.

In the case of odd parity pairing, we have already seen in Eq. (5.66) that the spin
and orbital states are entangled in the order parameter. If the spin–orbit interaction
is present, the Kramers pair consists of mixture of spin and orbital states, which are
called pseudo-spins. Then we only have to change the basis set from the real spin
to the pseudo-spin to describe the Kramers pair for a given crystal momentum. The
simplest is the Γ −

1 (A1u) symmetry, which corresponds to the point-group version
of the BW state. The d-vector is given for lower orders of k by

d
(
k̂
) = ẑkzg0

(
k̂
)+ (x̂kx + ŷky)g1

(
k̂
)+ (x̂kx − ŷky)

(
k2
x − k2

y

)
g2
(
k̂
)

= ẑkzg0
(
k̂
)+ (Rek+r̂−)g1

(
k̂
)+ (Rek3+r̂+)g2

(
k̂
)
, (5.70)

where x̂ is the unit vector along the x-axis, and r̂± = x̂ ± iŷ. The functions
gi(k̂) (i = 0, 1, 2) all behave as scalar in the point group. An example has been
given by Eq. (5.67). The condition of minimum free energy determines the form of
gi(k̂). In the case of gi 	= 0 in Eq. (5.70), the parts in front of g0 and g1 represent
the p-wave, while the part in front of g2 represents the f -wave (l = 3). On the other
hand, in the case of g1 = g2 = 0, a state with Sz = 0 is realized. This corresponds
to the polar state in Eq. (5.66) with line nodes at kz = 0.

Another one-dimensional representation has the symmetry Γ −
3 (B1u). The d-

vector in the lowest order in k is given by

d(k) = (x̂kx − ŷky)g0
(
k̂
) = (Rek+r̂+)g0

(
k̂
)
, (5.71)
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Table 5.2 Irreducible
representations and examples
of basis functions of an odd
parity pair in the point group
D4h

Representation Basis functions

Γ −
1 (A1u) ẑkz; Rek+ r̂−; Rek3+ r̂+

Γ −
2 (A2u) Imk+r̂−; Imk3+r̂+; kzImk4+ẑ

Γ −
3 (B1u) Rek+r̂+; kzRek2+ẑ; Rek3+ r̂−

Γ −
4 (B2u) Imk+r̂+; kzImk2+ẑ; Imk3+ r̂−

Γ −
5 (Eu) kn+1± ẑ; kzk

n± r̂±; kzk
n+2± r̂∓ (n = 0, 2)

Here r̂± ≡ x̂±iŷ, and, in the last row, the pair of functions
with suffices ± or ±∓ make the basis functions of the 2D
representation

with nodes at kx = ky = 0, which correspond to north and south poles on the Fermi
surface. Table 5.2 shows all the irreducible representations for D4h, and examples
of basis functions. Similar analysis can be carried out for other point groups with
cubic and hexagonal symmetries [19].

5.9 Pairing with Repulsive Interaction

In Cu oxides and Fe pnictides/chalcogenides, some compounds have high transition
temperatures Tc in spite of large Coulomb repulsion between electrons. The first
material in the high-Tc family was found in 1986; Ba2CuO4 doped with La with
Tc ∼ 35 K [5]. The highest Tc so far reported is 164 K in HgBa2Ca2Cu3Ox (x ∼ 8)
under pressure. On the other hand, the first Fe-based superconductor found in 2008
is LaFeAsO doped with F (fluorine) [6]. The highest Tc in this family now reaches
about 60 K [7]. The mechanism for the high Tc in these materials has been studied
intensively. The common feature is the antiferromagnetic order without doping,
which remains to some extent of doping. With further increase of the carrier density,
superconductivity appears. Thus it is natural to expect a strong interplay between
superconductivity and antiferromagnetism. Another common feature is that both
Cu and Fe superconductors have layer-type tetragonal structures, and electrons with
quasi-2D character play a dominant role in the superconductivity. As the zero-
th approximation, we may take the square lattice for investigating mechanism of
superconductivity.

The tetragonal structure of the Cu oxide superconductors is shared with another
class of superconductor Sr2RuO4, which has Tc ∼ 1.5 K. The relevant 4d electrons
from Ru are quasi-two dimensional and close to magnetic orders. With Ca doping,
for example, not only antiferromagnetism but also ferromagnetism tends to appear.
The odd parity pairing has long been suspected on the basis of the NMR Knight
shift [11], which does not seem to decrease below Tc.2

2However, recent accurate NMR experiment by A. Pustogow et al: Nature 574, 72 (2019) has
shown that the Knight shift does decrease below Tc as in singlet superconductors.
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Some materials with f electrons become superconductor with heavy effective
mass of electrons [20]. Among these materials PuRhGa5 has the highest Tc ∼ 16 K
under pressure. The crystal structure consists of layers of PuGa2 sandwiched by
another layers RhGa3. The quasi-2D 5f electrons in PuGa2 may play a dominant
role in the pairing. There are several Ce compounds with the same crystal structure
such as CeRhIn5 with Tc ∼ 2 K under pressure of a few GP, and antiferromagnetic
order with zero pressure [21].

In this section we discuss superconductivity by Coulomb repulsion by taking
the Hubbard model. For simplicity the electron–phonon interaction is neglected. In
terms of the perturbation theory in U , the effective attraction occurs in O(U2). The
transition temperature is very small in the range of U accessible by perturbation
theory. On the other hand, actual materials mentioned at the beginning have large
U which is comparable to the conduction bandwidth or even more. Hence it is
necessary to employ a non-perturbative method such as numerical simulation for
realistic argument. Nevertheless, we rely on the weak-coupling theory since it
provides the most transparent idea as to the origin of the attractive force.

We consider the situation where the number of electrons is slightly smaller than
one per lattice site. If the number is just one, which corresponds to half-filling of
the conduction band, antiferromagnetism is favored, and the system becomes an
insulator. This is because the antiferromagnetism makes reduction of the Brillouin
zone due to the doubled unit cell, and the energy gap is formed along the new
boundary of the zone. The lower conduction band is then completely filled.

The effective interaction is derived in the general framework discussed in
Chap. 1. As the perturbation H ′ we take the repulsion term with U , which is written
in the momentum space as

H ′ = U

N

∑

k,p

∑

q

c
†
↑(k + q)c

†
↓(−k)c↓(−p)c↑(p + q). (5.72)

This representation makes explicit the annihilation of the singlet pair by c↓c↑, and
the creation by c

†
↑c

†
↓. In the following we only consider the part with the zero pair

momentum q = 0. In deriving the effective interaction between two electrons, we
choose the model space as the BCS-like states given by Eq. (5.8) with arbitrary
values of parameters uk, vk , and φ. Then the second-order effective interaction

PH ′ 1

E0 − H0
QH ′P (5.73)

describes the interaction between a pair of electrons forming a spin singlet. Here the
model space consists of singlet pairs of electrons excited from the ground state of
many electrons. Consequently the projection operator Q excludes the states where
only singlet pairs are excited.

Evaluation of the effective interaction Eq. (5.73) is reduced to taking the average,
or the vacuum expectation value, of the product of the creation and annihilation
operators of electrons with the same momentum k and spin. Since such operator
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pairs occur only once for each spin, the average of the product of operators is equal
to the product of the average of each spin component. This factorization property
can be generalized to arbitrary number of operators. The details are discussed in
Chap. 9 as Wick’s theorem.

For the moment we restrict to terms of O(U2), and represent each average by a
line where the arrow points to the annihilation operator. Thus each line represents
either the occupation number f (εk) = 〈c†

kσ
ckσ 〉 of the particle at T = 0, or that

of the hole 1 − f (εk) = 〈ckσ c
†
kσ 〉, depending on the arrow direction relative to

sequence of the process. Such pictorial representation of perturbation processes
is called the Goldstone diagram [22], a simpler example of which has already
appeared in Fig. 1.2. Since a given diagram faithfully follows the perturbation
sequence, one can reconstruct the corresponding mathematical expression rather
directly, as will be demonstrated in Eq. (5.76) below. There is another diagram
method due to Feynman, which uses the single-particle Green function as a building
block. The Feynman diagram deals with particles and holes symmetrically, and is
valid also at finite temperature by use of the Matsubara frequency. The Matsubara
scheme has been explained in Chap. 3. Since the Feynman method requires more
elaborate preparation, its detailed exposition is deferred to Chap. 9. For representing
an effective Hamiltonian with explicit use of projections operators P and Q, the
Goldstone diagram is simpler and more convenient.

For small U , the lowest-order term dominates the higher order ones for the
isotropic part of the interaction. In other words, all effects that do not provide
anisotropy of the effective interaction can be neglected. For example, we neglect
the screening of U by a particle–hole pair. We instead concentrate on the processes
that give rise to anisotropic effective interaction. Since the anisotropy is not present
in the original interaction U , the second-order term may dominate depending on the
symmetry of the pair wave function.

In second-order scattering processes of a pair, we have either (a) parallel or
(b) antiparallel lines between the action of two U ’s. The case (a) represents the
successive scattering of a singlet pair, which keeps the isotropy of the interaction.
If the projection operator P includes all energy range of the singlet pair, (a) is
rejected as an effective interaction by Q. If one redefines P so as to project the
singlet pair onto the narrow energy range near the Fermi level, however, the case (a)
represents renormalization of U . This process is illustrated in Fig. 5.6 in the solution
of Problem 5.5. On the other hand, the case (b) which is illustrated in Fig. 5.4, gives
an anisotropic effective interaction that has a strong dependence on the transferred
momentum p − k.

Assuming electrons near the Fermi surface for both initial and final states, we put
εk = εp = 0 in Fig. 5.4. Then the denominator in Eq. (5.73) is given by

E0 − H0 → ε−p+q − εk+q . (5.74)

Furthermore the Pauli principle imposes the constraint

[
1 − f (εk+q)

]
f (εp−q) (5.75)
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k, σ

−k, σ̄ −p, σ̄

p, σk + q, σ

−p+ q, σ̄

Fig. 5.4 Illustration of the most relevant term in Eq. (5.73). The dashed lines represent the
repulsive interaction U , and the solid lines with arrows specify either an electron state with positive
energy, or a hole state otherwise. Provided the perturbation sequence goes from left to right in the
diagram, the arrows indicate εk+q > 0 and ε−p+q < 0

for the intermediate states with f (ε) the Fermi distribution function. To obtain the
effective interaction V (k,p), we have to include another term where (k, σ ) and
(p, σ ) are interchanged by (−k, σ̄ ) and (−p, σ̄ ) in Fig. 5.4. The latter term gives
ε−p+q − εk+q for E0 − H0 and

[
1 − f (εp−q)

]
f (εk+q)

for the constraint. Then the two processes combine to give

1

N

∑

q

f (ε−p+q) − f (εk+q)

ε−p+q − εk+q

≡ −χ0(k + p), (5.76)

with χ0(k + p) (> 0) being the static polarization function. We now obtain
the effective interaction, which is a generalized version of V (k − p) in the gap
equation (5.27), as

V (k,p) = −U − U2χ0(k + p), (5.77)

up to the second order in U . The sign of V (k,p) is taken so that V (k − p) > 0
means the attraction as defined in Eq. (5.16). Hence, χ0(k +p) works as a repulsive
force for the s-wave. However, this situation may change for anisotropic cases.

We take the 2D model in view of high-Tc superconductors based on Cu and
Fe. Although the sign of V (k,p) corresponds to repulsion for the s-wave pair, its
dependence on relative angles between k and p favors an anisotropic electron pair.
To be more specific, we take the nearest-neighbor hopping in the square lattice. Then
the kinetic energy is given by

εk = −2t
(
cos kx + cos ky,

)
(5.78)
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Fig. 5.5 Illustration of the
Fermi surface and sign of the
stable gap function Δ(k). The
region A around k = (kx, 0)
and the region B (shaded)
around p = (0, py) have
opposite signs so that
Δ(p)Δ(k) < 0. Then k + p

takes the value close to
Q = (π, π) that corresponds
to M point in the Brillouin
zone. The dashed lines show
the Fermi surface for the
half-filled case

where −t is the transfer integral, and the lattice constant is taken to be unity. If the
electron density is slightly smaller than one per site, the Fermi surface takes the
shape as shown by the solid line in Fig. 5.5.

For the half-filled conduction band with the square Fermi surface, χ0(q) is
divergent logarithmically at q = (π, π) ≡ Q and its equivalent points, called M , in
the Brillouin zone. The divergence corresponds to the antiferromagnetism at T = 0.
The divergence disappears with deviation of the density, but the large magnitude of
χ0(q) at q = Q and its neighborhood remains. Then with k ∼ (π, 0), p ∼ (0, π),
χ0(k + p) ∼ χ0(Q) in Eq. (5.77) becomes large. If the gap function has opposite
signs in the regions A, B as indicated in Fig. 5.5, the large magnitude of χ0(Q)

contributes to formation of the anisotropic electron pair. The different regions of the
Brillouin zone are analogous to different bands in the multiband model discussed
in Sect. 5.4. By analogy with the pair transfer term that increases Tc, the transfer
between the regions A, B contributes to the pairing. The symmetry of the pair
corresponding to Fig. 5.5 is identified as Γ +

3 (= B1g). Namely, we obtain the singlet
gap function

Δ(k) ∝ k2
x − k2

y, (5.79)

which belongs to the d-wave. The node occurs at kx = ±ky , which is indicated by
dotted lines in Fig. 5.5. The singlet d-wave pairing captures a characteristic feature
in Cu oxide superconductors from the weak-coupling side.

Let us proceed to solution of the gap equation with V (k,p). We assume that Tc
is much smaller than the Fermi energy, and use the value of V (k,p) at T = 0.
As indicated in Fig. 5.5, it is convenient to take the argument ϕ of k at the Fermi
surface, and regard Δ(k) as a function of ϕ [23]. To decompose into components
of angular momentum, we introduce the angle-resolved density of states ρ̃(ϕ) at the
Fermi surface as

ρ(μ) = 1

N

∑

k

δ(μ − εk) ≡
∫

dϕ

2π
ρ̃(ϕ). (5.80)
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In terms of the angle-dependent Fermi momentum k(ϕ) and the Fermi velocity
v(ϕ) = |∇kεk|, we obtain ρ̃(ϕ) = k(ϕ)/[2πv(ϕ)]. To deal with the ϕ-dependence,
we introduce the weight function w(ϕ) such that ρ̃(ϕ) ≡ ρ(μ)w(ϕ). Then we use
the modified Fourier components defined by

Am(ϕ) = exp(imϕ)/
√
w(ϕ), (5.81)

which has the orthogonal property

∫
dϕ

2π
w(ϕ)Al(ϕ)

∗Am(ϕ) = δlm, (5.82)

with the weight function w(ϕ). Then setting Δ(k)|FS ≡ Δ̃(ϕ) at the Fermi surface
(FS), we make the Fourier-like decomposition

Δ̃(ϕ) =
∞∑

m=−∞
ΔmAm(ϕ), (5.83)

Δm =
∫

dϕ

2π
w(ϕ)Am(ϕ)

∗Δ̃(ϕ). (5.84)

Similarly we introduce V (k, k′)|FS ≡ Ṽ (ϕ, ϕ′)|FS, and makes its Fourier decompo-
sition

ρ(μ)V (ϕ, ϕ′) =
∑

lm

glmAl(ϕ)Am(ϕ
′)∗, (5.85)

glm =
∫

dϕ

2π
w(ϕ)Al(ϕ)

∗
∫

dϕ′

2π
w(ϕ′)Am(ϕ

′)ρ(μ)V (ϕ, ϕ′). (5.86)

The property V (ϕ, ϕ′) = V (ϕ′, ϕ) = V (−ϕ,−ϕ′), imposes the constraint on the
coupling constant glm as glm = gml = gl̄m̄ with l̄ = −l. Furthermore the tetragonal
symmetry requires glm to vanish except for l−m = 4n (n = integer). This is because
V (ϕ, ϕ′) is invariant against π/2 rotation in the k-space: ϕ, ϕ′ → ϕ+π/2, ϕ′+π/2.

With use of components for angular momentum introduced above, the gap
equation is rewritten as

Δl = ln
D

Tc

∑

m

glmΔm, (5.87)

where D is of the order of bandwidth. The transition temperature Tc is determined
by the condition that the matrix composed of elements δlm − glm ln(D/Tc) has zero
determinant. The s-wave pair corresponds to l = m = 0, which is unfavorable
because the bare term −U in Eq. (5.77) makes g00 < 0. To the contrary, in glm
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with l, m 	= 0, the isotropic bare term drops out through angular average. This is an
example that anisotropic pairs are favored in the presence of short-range Coulomb
repulsion.

As the simplest approximation to describe the anisotropic singlet pair, we keep
only the lowest components l, m = ±2. Namely, we neglect possible mixture
with |l| = 6, 10, 14, . . .. Accordingly, we expand ρ̃(ϕ) in terms of angular
momentum, and keep only the isotropic (l = 0) component, which is nothing but
the density of states ρ(μ). The gap equation (5.87) becomes diagonal for irreducible
representations. The case Δ−2 = Δ2 gives irreducible representations B1g , while
another one Δ−2 = −Δ2 gives B2g . In respective cases, we obtain

B1g : Δ̃(ϕ) = 2Δ2 cos 2ϕ ∝ k2
x − k2

y, (5.88)

B2g : Δ̃(ϕ) = 2iΔ2 sin 2ϕ ∝ 2kxky, (5.89)

in accordance with Table 5.1. The coupling constant for B1g is given by

g(B1g) = 1

2

∑

αβ

gαβ = 2ρ(μ)
∫

dϕ

2π
cos 2ϕ

∫
dϕ′

2π
cos 2ϕ′V (ϕ, ϕ′), (5.90)

with α, β = ±2. The favorable region for integration is ϕ + ϕ′ ∼ (n + 1/2)π with
respect to V (ϕ, ϕ′), which corresponds to k + p ∼ (π, π) and equivalent points.
The region matches with ϕ ∼ 0 and ϕ′ ∼ π/2 where the cosine functions also
have large weight with cos 2ϕ ∼ 1 and cos 2ϕ′ ∼ −1, and the combination gives
g(B1g) > 0. The transition temperature is given by

Tc = D exp[−1/g(B1g)]. (5.91)

On the other hand, the B2g-pairing has the coupling constant

g(B2g) = 2ρ(μ)
∫

dϕ

2π
sin 2ϕ

∫
dϕ′

2π
sin 2ϕ′V (ϕ, ϕ′). (5.92)

The sine functions favor the region such as ϕ ∼ π/4 and ϕ′ ∼ 3π/4, and this
combination gives ϕ + ϕ′ ∼ π . However, this is not the best region for V (ϕ, ϕ′) as
seen from Fig. 5.5. Hence g(B2g) should be smaller than g(B1g).

As the electron density becomes smaller, the Fermi surface tends to a circle as
that in the free 2D space. In this case χ0(q) is a constant for |q| < 2kF . Then
various types of spin singlet and triplet compete for the stability, and it is not easy to
determine the most stable pairing symmetry. On the other hand, the spherical Fermi
surface is relevant to superfluid 3He. If we take the short-range repulsion between
fermions, the p-wave pair is most favored since χ0(q) becomes the largest at q = 0.
Let us consider the case kz = 0 to simplify the situation. If the gap function changes
sign by π rotation around the z-axis, the effective interaction becomes attractive,



Solutions to Problems 103

and takes advantage of the peak of χ0(k + p) at p = −k. This is realized by a
triplet with the d-vector

d(k) ∝ ẑ(kx ± iky), (5.93)

which corresponds to the ABM state in Eq. (5.66). It can be shown that BW
state gives the same Tc in the present approximation. If higher order effects
of U are taken into account. the component q = 0 contributes even stronger
in the presence of strong ferromagnetic fluctuations. In actual superfluid 3He,
ferromagnetic fluctuations seem to contribute to stability of the p-wave pairing.

Problems

5.1 Derive the norm of the BCS state ΨBCS as given by Eq. (5.8).

5.2 Diagonalize the 2 × 2 matrix hBCS(k) in Eq. (5.22).

5.3 Construct ΨBCS in terms of Bogoliubov quasi-particles.

5.4 Show that the state with ΔAΔB 	= 0 is already present at temperature higher
than TA and TB.

5.5 ∗ After learning the scaling method to be explained in Chap. 6, derive the
effective repulsion U∗ given by Eq. (5.47).

5.6∗ Derive the eigenvalues of ĥ(k) given by Eq. (5.64).

Solutions to Problems

Problem 5.1
The pair creation operator c†

↑(k)c
†
↓(−k) commutes with another with momentum

different from k. Then the expectation value can be taken for each k, and we obtain

〈ΨBCS|ΨBCS〉 =
∏

k

〈0|u2
k + v2

kc↓(−k)c↑(k)c†
↑(k)c

†
↓(−k)|0〉

=
∏

k

(
u2

k + v2
k

)
. (5.94)

Namely, the normalization condition is u2
k + v2

k = 1. Note that the norm is
independent of the phase φ. This independence holds also for matrix element of
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gauge-invariant operators such as Hamiltonian. Hence the energy of the BCS state
is independent of φ.

Problem 5.2
We first consider the case where Δ(k) is real. The inversion symmetry requires
ε−k = εk . In the unitary transformation defined by Eq. (5.23), we make the
parameterization

uk = cos θ, vk = sin θ, (5.95)

in the normalized BCS state. Then the diagonalization of the matrix is equivalent
to the coordinate rotation to make hyperbola specified by

f (x, y) = ε(x2 − y2) + 2Δxy = C (5.96)

to the standard form without the cross term xy. Here C is a real constant, and ε and
Δ are in the simplified notation without k. The rotation angle θ should be chosen as
tan 2θ = Δ/ε, or equivalently

sin−2 2θ = 1 + cot2 2θ = ε2 + Δ2

Δ2
. (5.97)

With Eqs. (5.95) and (5.97), we obtain

2ukvk = sin 2θ = |Δ(k)|/E+(k), (5.98)

where

E±(k) = ±
√
ε2
k + |Δ(k)|2 (5.99)

is the eigenvalues of hBCS.
If Δ(k) is a complex number with argument φ, the unitary transformation is

chosen as

ψ(k) =
(

uk eiφvk

−e−iφvk uk

)
ψ̃(k). (5.100)

By using the same θ as given by Eq. (5.95) we obtain

ψ†(k)

(
εk Δ(k)

Δ(k)∗ −ε−k

)
ψ(k) = ψ̃

†
(k)

(
E+(k) 0

0 E−(k)

)
ψ̃(k). (5.101)
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Here the two-component field ψ̃
†
(k) = (α†(k), β†(k)) corresponds to creation

operators of quasi-particles. From Eq. (5.23), we obtain the inverse transformation

αk = ukc↑(k) − eiφvkc↓(−k)†, (5.102)

βk = e−iφvkc↑(k) + ukc↓(−k)†, (5.103)

which is often called the Bogoliubov transformation.

Problem 5.3
Because of the property E−(k) = −E+(k) < 0, the ground state is characterized
by 〈β†

kβk〉 = 1 and 〈α†
kαk〉 = 0. Hence the ground state should be constructed from

the vacuum |0〉 by

∏

k

β
†
kαk|0〉 =

∏

k

(
−eiφ

)
vk

[
uk + eiφvkc

†
↑(k)c

†
↓(−k)

]
|0〉, (5.104)

which is indeed proportional to ΨBCS given by Eq. (5.8).

Problem 5.4
Nonzero order parameter requires the zero determinant of the matrix in Eq. (5.41).
This condition is equivalent to

1 − gALA = J 2
HρAρBLALB

1 − gBLB
(> 0). (5.105)

With decreasing temperature, LA(T ) increases, and the LHS becomes zero at T =
TA with gA > 0. Hence there is a temperature Tc above TA where Eq. (5.105) is
satisfied. Note that the result Tc > TA does not depend on the signs of JH and gB.
Namely, the pair transfer always increases Tc, even if the band B does not favor
superconductivity. This is analogous to lowering of the ground state energy in the
second-order perturbation theory.

Problem 5.5∗
Although the topic is included in superconductivity, it is appropriate to challenge
the problem after learning the scaling theory to be discussed in Sect. 6.2. Following
the standard procedure to derive the effective Hamiltonian in the scaling theory,
we change the bandwidth by the infinitesimal amount δD < 0 on both high and
low energy ends. Correspondingly, in Fig. 5.6 which represents Π(p), both of two
electrons in the intermediate state have energies in the narrow range of [D+δD,D]
or [−D,D − δD]. Then the change of the effective interaction is given by

δU = δD

D
U2ρB. (5.106)
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Fig. 5.6 Correction to the effective interaction which corresponds to renormalization of the
Coulomb repulsion. The energy of electrons with arrows are both near the upper or lower band
edges

corresponding to Eq. (6.16). By integrating both sides of Eq. (5.106) and putting
Deff = ωD, we obtain Eq. (5.47).

Problem 5.6∗
It is convenient to deal first with ĥ(k)2, which is easily obtained as

ĥ(k)2 =
(
ε2
k + Δ̄Δ̄† 0

0 ε2
k + Δ̄†Δ̄

)
. (5.107)

With use of quantities defined by Eq. (5.61), we obtain

Δ̄Δ̄† = |D|2 + |d|2 + w · σ , Δ̄†Δ̄ = |D|2 + |d|2 − w · σ ,

where w = id × d∗ = w∗ is a real vector. Diagonalization of 2 × 2 matrices in
Eq. (5.107) can easily be performed. From the eigenvalues for ĥ(k)2, we take the
square root to obtain the eigenvalues of ĥ(k) as

Eτσ (k) = τ

√
ε(k)2 + |D(k̂)|2 + |d(k̂)|2 + σ |w(k̂)|, (5.108)

with τ, σ = ±1. This result suggests that w behaves as a kind of magnetic field.
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Chapter 6
Kondo Effect

Abstract This chapter discusses Kondo effect for a magnetic impurity in metals.
The concept of renormalization is crucial in understanding Kondo effect. Simply
speaking, the exchange interaction between the impurity and conduction electrons
becomes endlessly large in the effective Hamiltonian, even though its magnitude is
originally tiny. As a result, the impurity spin is completely screened in the ground
state, resulting in a local Fermi liquid. However, if the impurity has also an orbital
degrees of freedom, another ground state may appear which is not a Fermi liquid
but with a residual entropy. We begin with description of the model and proceed to
actual procedure of renormalization. The effective Hamiltonian formalism presented
in Chap. 1 is used extensively. Also discussed is how to understand the ground state,
which is either Fermi or non-Fermi liquid.

6.1 Hybridization and Exchange Interactions

The most popular model to describe a magnetic impurity in metals is called
the Anderson model [1]. The simplest version takes a non-degenerate orbital for
local electrons at the origin, together with a non-degenerate conduction band. The
annihilation operators of these electrons are written as fσ with spin σ and ckσ with
momentum k, respectively. The local and conduction electrons are called f - and
c-electrons, respectively, in the following. The Anderson model is given by

HA =
∑

kσ

εkc
†
kσ ckσ + εf

∑

σ

nf σ + 1

2
U
∑

σ 	=σ ′
nfσ nf σ ′ + Hhyb, (6.1)

Hhyb = 1√
N

∑

kσ

V (c
†
kσ
fσ + f †

σ ckσ ), (6.2)

where U represents the Coulomb repulsion between local electrons with the number
operator nfσ = f †

σ fσ . The two kinds of electrons mix (or hybridize) with strength
V . The factor 1/

√
N , with N being the number of lattice points in the system, enters

in superposing the Bloch state to build the Wannier state localized at the origin. The
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actual hybridization of a local electron mostly occurs with a surrounding ligand
orbital, which accompanies k-dependence in hybridization. Equation (6.2) neglects
this aspect for simplicity. The Anderson model has rich content encompassing the
atomic (localized electron) limit with U/V � 1 (or UD/V 2 � 1 for the large
bandwidth D), and the single-particle resonance with U = 0.

Let us consider the situation where the f -electron level εf is much below the
Fermi level, while εf + U , which is the energy for the second electron to occupy,
is much above because of the large U . Then the average occupation number of f -
electrons is almost one, and the fluctuation from the average is negligible. In this
situation it is reasonable to take the model space where the occupancy of the local
level is fixed to one. In the model space the spin S is the only degrees of freedom
for f -electrons. We derive the effective Hamiltonian explicitly for this model space.

The hybridization Hhyb connects the model space to the complementary space
projected by Q, which has either zero or double occupancy of f -electrons. Then the
effective interaction in the lowest order is given by

Hint = PHhyb(Eg − Hc − Hf )
−1QHhybP, (6.3)

where Eg is the zeroth-order energy for the ground state, and Hc,Hf represent c-
and f -electron parts without hybridization, respectively. Figure 6.1 illustrates the
perturbation processes in the effective interaction. Since the double occupancy is
possible only for singlet of local spins, hybridization to the doubly occupied state
works only for singlet pair of f - and c-electrons. Hence the processes (a), (b) shown
in Fig. 6.1 accompany the singlet projection operator

Ps = −S · sc + 1

4
nc, (6.4)

where sc and nc are, respectively, spin and number operators of c-electrons at
the origin. In the process (a), the c-electron spin remains the same through

(a) (b)

(c)

Fig. 6.1 Second-order processes of hybridization. The horizontal lines with arrow represent
occupied f -states with any spin, and the slant lines represent c-electron states
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hybridization, while in (b), a spin exchange occurs with f states. On the other hand,
the process (c) in Fig. 6.1 involves the vacant f state, and accompanies the spin
exchange which allows triplet states of f - and c-electrons as well. The latter kind
of exchange is called permutation, and is described by the operator

Pspin = 2S · sc + 1

2
nc, (6.5)

which gives ±1 when applied to triplet and singlet states, respectively. In this way
we rearrange the processes (a), (b), and (c) in Fig. 6.1 into the exchange interaction
including S · sc, and the potential scattering including nc. The effective Hamiltonian
thus takes the form

Heff = Hc + 1

N

∑

kσ

∑

k′σ ′

(
1

2
Jkk′S · σ σ ′σ c

†
k′σ ′ckσ + Kkk′δσσ ′c†

k′σ ′ckσ

)
, (6.6)

where the exchange interaction is given by

Jkk′ = 2V 2
[

1

εk′ − εf
− 1

εk − εf − U

]
, (6.7)

and the potential scattering by

Kkk′ = 1

2
V 2

[
1

εk′ − εf
+ 1

εk − εf − U

]
. (6.8)

For simplicity, we consider the situation where the energy εk of conduction electrons
is negligible as compared with εf and εf +U . In the special case with the condition
εf + U = |εf |, which is called the symmetric case, the potential scattering Kkk′
vanishes. The exchange interaction in this case is given by

J = 4V 2/|εf | = 8V 2/U. (6.9)

In summary, by neglecting charge fluctuations of f -electrons in the Anderson
model, we have obtained the effective model

HK = Hc + JS · sc = Hc + Hex, (6.10)

which is called the Kondo model. In the momentum representation, the spin operator
sc is given by

sc = 1

2N

∑

kk′

∑

σσ ′
c

†
kσ

σ σσ ′ck′σ ′ . (6.11)
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The Kondo model has even simpler appearance than the Anderson model. However,
the model has the astonishing property that perturbation theory in J breaks down
at zero temperature, no matter how small J is. At high temperatures, on the other
hand, the perturbation theory works. Here the meaning of “high temperatures” is
highly nontrivial, as explained later. We note that the expansion parameters U in the
Anderson model, and J in the Kondo model assume different states as the starting
point. These different states can be connected continuously by the renormalization,
which is discussed in the next section.

6.2 Renormalization in Kondo Model

Renormalization of Kondo model has been studied by a variety of methods. We
apply the effective Hamiltonian formalism, which is equivalent to the method often
called the scaling. Namely, the effective bandwidth in the model space is reduced by
infinitesimal amount |δD| in each step of renormalization. Then the renormalization
takes the form of a differential equation for the effective exchange interaction
J , and the integration gives a finite change of J . The process how the effective
interaction changes is called the renormalization (or scaling) flow. An example will
be illustrated later in Fig. 6.3.

We assume the simplest form of the conduction band with constant density of
states (per spin) ρc = (2D)−1 in the interval [−D,D], and zero otherwise. The
Fermi level is located at the center of the band: μ = 0. With this setting we consider
a new model space in the Kondo model where the c-electron states near the upper
and lower band edges are excluded by an infinitesimal amount. Namely, we choose
the projection operator Q that includes only such c-electron states with energy [D+
δD,D] or [−D,−D − δD] (δD < 0). The model space projected by P = 1 − Q

excludes those states near the band edges. In the lowest order with respect to J , the
effective Hamiltonian in the new model space is given by

Heff = P(Hc + Hex)P + PHex(Eg − Hc)
−1QHexP, (6.12)

where Eg is the ground state energy of Hc.
Let us explicitly derive the change of Heff by the infinitesimal change δD.

Figure 6.2 illustrates the second-order terms in Eq. (6.12) which gives δJ . The c-
electron has spin σ for the incident state, ξ for intermediate states, and σ ′ for the
scattered state. Let us focus on the component JSβs

β
c in the first scattering by

QHexP , and another one JSαsαc in the second scattering by PHex. In Fig. 6.2a,
which is called the direct scattering diagram, the matrix elements of sc are given by

〈σ ′|sαc |ξ 〉〈ξ |sβc |σ 〉. (6.13)
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σσ σξ σ

ξ

(a) (b)

βα α β

Fig. 6.2 Second-order correction to the effective interaction. The solid lines represent c-electron
states, and the dashed lines impurity spin states

On the other hand, the crossed diagram shown in Fig. 6.2b has matrix elements

〈σ ′|sβc |ξ 〉〈ξ |sαc |σ 〉. (6.14)

Summation over ξ can be taken independent of the energy denominator. Taking
care of the minus sign in the process (b) that involves commutation of fermion
operators, we combine (a) and (b) to obtain the second-order correction to the
effective interaction as

J 2

−D

∑

αβ

SαSβ
[
sαc , s

β
c

] |δD|ρc = −δD

D
J 2ρcS · sc. (6.15)

Some details how to use the spin commutation relation are the subject of Prob-
lem 6.1. We emphasize that the correction has precisely the same form as the
original interaction Hex except for the coupling strength. Hence the renormalization
appears as the change δJ of the exchange interaction given by

δJ = −δD

D
J 2ρc, (6.16)

which is called the scaling equation. It is also called the renormalization group
equation since each step of scaling is regarded as an element of a group. However,
the renormalization group has no inverse element, and is not an ordinary group in the
mathematical sense. We remark that the spin commutation rule plays the essential
role in the renormalization. If the perturbation Hex in Eq. (6.12) is replaced by a
potential scattering V , the second-order processes (a) and (b) in Fig. 6.2 cancel each
other, and renormalization of V does not occur.

We can repeat the renormalization procedure as long as the effective bandwidth
2Deff remains much larger than the characteristic energy scale, which is to be
determined later. Under this restriction, integration of the scaling equation leads
to

Jeff = J

1 − Jρc ln(D/Deff)
, (6.17)
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where the boundary condition is Jeff = J at Deff = D. Most importantly, Jeff
increases with the decrease of Deff. The divergence at Deff = D exp[−1/(Jρc)]
should be taken with care since the result is outside the valid range of second-order
renormalization. The Kondo temperature TK is defined by this energy in units of
temperature. With the Boltzmann constant kB set to unity, TK is given explicitly by

TK = D exp

(
− 1

Jρc

)
→ D exp

(
− U

8V 2ρc

)
, (6.18)

where the rightmost expression corresponds to parameters in the symmetric Ander-
son model. Note that the scale TK cannot be obtained by perturbation theory in J ,
since it is not analytic around J = 0. On the other hand, TK is analytic around U = 0
according to Eq. (6.18). Although the result has been obtained with the assumption
of large U , the analyticity remains valid also down to small U .

The divergence of Jeff at Deff = TK in Eq. (6.17) should not be taken literally.
It should rather be interpreted that the perturbation theory breaks down below the
energy of the order of TK. In this sense, the characteristic energy scale of the system
is given by TK. As we shall discuss later, the Kondo temperature TK characterizes
physical quantities such as resistivity, susceptibility, and specific heat.

At finite temperature T , c-electrons are thermally excited in the range of ±T

around the Fermi level. As long as Deff � T , there is no effect of temperature in the
renormalization. However, Deff cannot be made smaller than T because of thermal
excitations. Then the effective exchange at T is given by setting Deff = T as

Jeff(T ) = J

1 − Jρc ln(D/T )
. (6.19)

In deriving physical quantities such as resistivity and susceptibility at finite T ,
one can use the straightforward perturbation theory in J to arbitrary order. The
equivalent result is reproduced simply by replacing the bare J by Jeff(T ), as long as
the most divergent logarithmic terms are concerned. This situation is best illustrated
in the electric resistivity ρ(T ) at T sufficiently larger than TK. In the simplest
transport theory, the conductivity σ = 1/ρ is determined in terms of the relaxation
time τ as follows:

σ = ne2τ

m∗ , (6.20)

where n is the density of conduction electrons with the effective mass m∗. In the
lowest order for scattering by J , which is called the Born approximation, we obtain

1

τ
= 2πcimpvcellJ

2ρc
∑

α

〈
S2
αs

2
α

〉
= 3π

8
cimpvcellJ

2ρc, (6.21)
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where cimp is the density of magnetic impurities and vcell is the volume of unit
cell. Derivation of Eq. (6.21) is the subject of Problem 6.2. The Born approximation
does not take into account higher order effect of J , which affects the low-energy
physics via intermediate states with high excitation energies. The effects of these
intermediate states are taken into account by using Jeff(T ) instead of J . The
replacement gives

ρ(T ) = ρ0

[1 − Jρc ln(D/T )]2 = ρ0

[Jρc ln(T /TK)]2 , (6.22)

where ρ0 represents the resistivity in the Born approximation. Equation (6.22)
reproduces the original result of Kondo who derived the logarithmic term in the
lowest order, O(J 3) [2], and also more elaborate calculation which sums up the
most divergent perturbation series [3]. The result is, however, justified only for
T � TK, but breaks down as the temperature approaches TK.

The actual ρ(T ) has an upper bound, in contrast to the divergent behavior
at T → TK suggested by Eq. (6.22). For more precise treatment than the Born
approximation, we deal with the transition matrix (called the t-matrix) of conduction
electrons. According to the scattering theory [4], the S- and t-matrix elements are
related by

Sab = δab − 2π iδ(Ea − Eb)tab, (6.23)

where Ea is the kinetic energy of the one-particle state a. Since the S-matrix is
unitary, S†S = 1, the t-matrix is constrained to be

Im taa = −π
∑

b

δ(Ea − Eb)|tab|2, (6.24)

which is called the optical theorem. The LHS describes the forward scattering,
while the RHS gives the total cross section of scattering. The latter is proportional
to 1/τ . In the angular momentum representation, the phase shift δ for the s-wave
scattering characterizes the t-matrix. Then the dimensionless quantity (Jρc)

2 in the
Born approximation is replaced by sin2 δ in Eq. (6.21) for 1/τ . The upper bound
corresponds to δ = π/2, which is called the unitarity limit. Hence the divergence of
ρ(T ) is a result of unjustified approximation. Another consequence of the unitarity
constraint will be discussed later in Sect. 10.6.

6.3 Anisotropic Kondo Model

The exchange interaction in the Kondo model is positive (J > 0), as long as it
is regarded as the effective Hamiltonian of the Anderson model. In actual cases,
other origins of J are present such as the Coulomb repulsion between local and
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conduction electrons. The latter is ferromagnetic in sign (J < 0). Since the result
given by Eq. (6.17) is valid for both signs of J , the negative renormalized exchange
becomes smaller in magnitude than the bare one. This means that the impurity spin
tends to be decoupled from conduction electrons at low temperature. In other words,
the case J < 0 is connected continuously to the special point J = 0, which leads to
the Curie law χ = C/T for the magnetic susceptibility at low temperature.

A natural question then arises as to what happens if the exchange is anisotropic,
including the case of positive and negative components. The resultant anisotropic
Kondo model is useful to visualize the renormalization flows how the localized limit
obeying the Curie law changes to the Pauli law similar to itinerant electron systems.
The simplest model including the anisotropy is given by

Hex = J⊥(Sxsx + Sysy) + JzSzsz, (6.25)

with axial symmetry. The scaling equation is modified from Eq. (6.16) as

δJz = −δD

D
J 2⊥ρc, δJ⊥ = −δD

D
JzJ⊥ρc. (6.26)

Combining the two equations above we obtain another differential equation

dJz/dJ⊥ = J⊥/Jz, (6.27)

which is integrated as

J 2
z − J 2⊥ = C, (6.28)

with C being a real number fixed by the bare exchange.
Figure 6.3 illustrates the scaling flows with various values of the bare exchange

interaction. The arrows indicate scaling flows as Deff decreases. These scaling flows
do not depend on the sign of J⊥. The end point of each arrow is called the fixed
point of renormalization. It can be seen that the fixed point is either J⊥ = 0 or
|J⊥| = ∞. The former (J⊥ = 0) represents the absence of spin flip that leads to the

Fig. 6.3 Renormalization
flows of anisotropic
exchange. The same flow
occurs for both signs of J⊥.
The arrows represent the
direction of renormalization
as the effective bandwidth is
reduced from the bare ones

|J⊥|

Jz0
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Curie law. The other fixed point |J⊥| = ∞ represents the complete screening as in
the isotropic case.

The Kondo temperature TK in the anisotropic Kondo model is defined as the
energy where the effective exchange diverge according to Eq. (6.26). Since the
integration constant remains finite, the divergence occurs simultaneously in Jz and
J⊥. With some algebra which is the subject of Problem 6.3 [5], we obtain the
following result for Jz > J⊥ > 0:

TK = D exp

(
− 1

Jz⊥ρc
tanh−1 Jz⊥

Jz

)
, (6.29)

with Jz⊥ ≡
√
J 2
z − J 2⊥, and tanh−1 being the inverse hyperbolic tangent function.

In the isotropic limit Jz⊥ → 0, we recover Eq. (6.18). In the Ising limit J⊥ = 0 or
Jz⊥ = Jz, on the other hand, we obtain TK → 0. This is physically obvious because
Kondo effect is absent without spin flip. For the opposite anisotropy J⊥ > Jz > 0,
the result is given by

TK = D exp

(
− 1

J⊥zρc
tan−1 J⊥z

Jz

)
, (6.30)

with J⊥z ≡
√
J 2⊥ − J 2

z . We again recover the isotropic limit with J⊥z → 0. On the
other hand, TK remains finite in the limit Jz = 0, since the exponent does not diverge
in the limit. This corresponds to the scaling behavior around Jz ∼ 0 in Fig. 6.3.

6.4 Ground State of Kondo Systems

Because of the mapping discussed in Sect. 6.1, it is reasonable to refer to both
Kondo and Anderson models as Kondo systems. The fixed point of the Kondo model
with J → ∞ is understood intuitively in terms of the Anderson model. For the
symmetric case 2εf + U = 0, the state with completely screened local spin is
connected to the trivial limit U → 0 in the Anderson model, as suggested by the
relation J ∼ V 2/U . It is known [6] that the ground state of the Anderson model has
the spin singlet irrespective of the magnitude of U (> 0). Namely, the singlet ground
state is connected continuously both to the U = 0 state with finite occupation of f
state and to the vacant f state. It is obvious that the vacant state has the spin singlet
even with U 	= 0.

In the following, we shall discuss the other end of extreme case with U → ∞. We
generalize the spin degeneracy to an arbitrary integer n, which is called the SU(n)
Anderson model. The generalization actually has a relation to realistic rare-earth
magnetic impurities. Because of the large spin–orbit coupling, the 4f 1 configuration
of Ce3+, for example, has the lowest level with the total angular momentum J =
L − S = 5/2, where L = 3 and S = 1/2 is the orbital and spin angular momenta,



118 6 Kondo Effect

respectively. Hence we have n = 2J + 1 = 6 in this case. In Yb3+ with 4f 13

configuration, the lowest level has J = 7/2 and n = 8. Such large values of n make
it useful to start from the result obtained in the limit of n → ∞ [7].

We modify the original Anderson model HA in such a way that the spin index
σ runs from 1 to n, and takes the limit U → ∞. In the resultant SU(n) Anderson
model

HSU(n) = Hc + Hf + Hhyb, (6.31)

the characteristic temperature, which corresponds to TK, depends on the hybridiza-
tion intensity W0(ε) as defined by

W0(ε) = 1

N

∑

k

|V |2δ(ε − εk). (6.32)

We make the simplest model where W0(ε) = W0 is a constant for −D < ε < D,
and 0 otherwise. In order to organize the perturbation series we take nW0 as the unit
of energy.

According to the Brillouin–Wigner perturbation theory, as discussed in Chap. 1,
the singlet energy E0 is given in the lowest order by

E0 = 〈0|Hhyb(E0 − Hc − Hf )
−1Hhyb|0〉

= nW0

∫ 0

−D

dε

E0 + ε − εf
, (6.33)

where the origin of the energy is taken to be the ground state of conduction electrons
without f states. The energy shift from the unperturbed state is called the effective
potential, or the self-energy, which is illustrated in the left panel of Fig. 6.4. In the
extreme case of nW0 � |εf | ∼ D, we can derive E0 analytically. The result is
given by

E0 − εf ≡ −T0 � −D exp

(
εf

nW0

)
, (6.34)

Fig. 6.4 Self-energies in the lowest order of hybridization. The left panel shows the singlet case
with vacant f state (wavy line) as the model space, while the right panel shows the n-fold
degenerate case with a singly occupied f state (dashed line) as the model space
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the derivation of which is the subject of Problem 6.4 [8]. In the case of n = 2 and
U = ∞, the energy T0 is the same as TK given by Eq. (6.18) with Jρc = 2W0/|εf |
according to Eq. (6.7). Note that T0 here is defined at zero temperature without any
reference to divergence.

On the other hand, any of the n-fold degenerate states has the self-energy shown
in the right panel of Fig. 6.4, with the magnitude of O(W0). Note that the self-energy
is of O(1/n) in units of nW0, since the hybridization works only for the same spin
index of f - and c-electrons. This is to be contrasted with the singlet case where
the hybridization involves n different species, making the self-energy of O(1) with
the same unit. This difference between the two self-energies causes the reversal of
renormalized energy levels from the bare levels, even though the local level εf is
deep inside the Fermi level.

In order to compare the renormalized energies of singlet and multiplet states, we
need actually another dimensionless parameter. Provided |εf | and D are of the same
order, the relevant parameter is the ratio r ≡ |εf |/(nW0) (> 1). Then we require
the condition r � ln n, which leads to the inequality

T0 = D exp(−r) � D/n > W0. (6.35)

In the large n limit, the multiplet energy E1 ∼ εf −O(W0) is higher than the singlet
energy E0 = εf − T0. Moreover, higher order terms for the singlet self-energy are
at most of O(1/n), and can be neglected in the large n limit. It is remarkable that
such simple calculation has identified the characteristic energy scale T0.

We proceed to the case where the average occupation number nf of f -electrons
is not an integer. Such situation in actual rare-earth systems including Ce or Yb is
called the mixed valence or valence fluctuation. In the present framework, nf is
derived as

nf = ∂E0

∂εf
= nW0

∫ 0

−D

dε
1 − nf

(E0 + ε − εf )2 = nW0

T0
(1 − nf ), (6.36)

which means

nf =
(

1 + T0

nW0

)−1

. (6.37)

Hence T0 becomes larger as nf becomes smaller. The case nf → 1 is often called
the Kondo limit.

The magnetic susceptibility χ at zero temperature can be derived by the second
derivative of the groundstate energy E0(H) with respect to the magnetic field H .
We associate the total angular momentum J = (n − 1)/2 with the degeneracy n,
and Jz with each of the n degenerate components. Since E0(H) is given by

E0 = W0

∑

Jz

∫ 0

−D

dε

E0 + ε − εf − gJμBJzH
, (6.38)
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the second derivative leads to

χ = CJnf /T0, (6.39)

where CJ = (gJμB)
2J (J + 1)/3 is the Curie constant. Derivation of Eq. (6.39) is

the subject of Problem 6.5. Note that T0 enters in χ in place of temperature T for
the Curie law.

6.5 Local Fermi Liquid

The Kondo systems lack the translational symmetry, but still the idea of the Fermi
liquid theory is applicable, as developed by Nozières [9]. In the singlet ground state
of a Kondo system, conduction electrons feel the spherically symmetric potential
at the impurity site, which is taken as the origin. Hence it is convenient to take
the spherical wave as the eigenbasis for conduction states. In addition, mutual
interaction works only locally around the origin. Hence the system is properly called
the local Fermi liquid. We apply the framework discussed in Chap. 4 to the local
Fermi liquid.

Since the conduction electrons feel mutual interactions only for the s-wave part,
the quasi-particles are specified by the radial momentum p (> 0) and spin σ .
Correspondingly the Landau interactions take the form f (pσ, kσ ′), which carry
all the information about the f -electron degrees of freedom. At the ground state,
the distribution function npσ of quasi-particles is one for p < pF with pF being
the radial Fermi momentum, and 0 for p > pF . In terms of the deviation δnpσ , the
low-lying excited states are characterized by the energy

E = Eg +
∑

pσ

εpσ δnpσ + 1

2

∑

pσ

∑

kσ ′
f (pσ, kσ ′)δnpσ δnkσ ′ +O

(
δn3

pσ

)
, (6.40)

where Eg is the groundstate energy. As in ordinary Fermi liquids, it is sufficient to
consider up to the second order in δnpσ in order to describe the specific heat and
susceptibility at low temperatures.

For low-energy excitations, δnpσ has a sharp peak at the Fermi level. In
f (pσ, kσ ′), therefore, p and k can be replaced by pF since the change of
f (pσ, kσ ′) is negligible in the small variation Δp with Δp � pF . By further
restriction from the spherical symmetry, the independent parameters for f (pσ, kσ ′)
are reduced to the following two:

F = 1

2
[f (pFσ, pF σ) + f (pFσ, pF σ̄ )] ρ

∗,

Z = 1

2
[f (pFσ, pF σ) − f (pFσ, pF σ̄ )] ρ

∗, (6.41)
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Fig. 6.5 Scattering process
of quasi-particles in the
second order of the effective
interaction f (pσ, p′σ ′). The
central part with two arrowed
lines corresponds to Πk(q, ω)

with σ̄ = −σ and where ρ∗ is the density of states (sum of spin components) at
the Fermi level. Let us derive the order of magnitude of the Landau parameters
in local Fermi liquid. The double momentum summation in Eq. (6.40) amounts to
the factor O(N2). The correction to Eg by the single impurity should be of O(1),
implying that the Landau interactions f (pσ, kσ ′) have the order of magnitude f ∼
O(1/N2). Consequently the dimensionless quantities F and Z are both of O(1/N)

with ρ∗ ∼ O(N).
If we regard Eq. (6.40) as the effective Hamiltonian of a hypothetical one-

dimensional system, f (pσ, kσ ′) corresponds to the effective interaction. The
momenta p, k of two quasi-particles remain the same after the interaction event,
which is the forward scattering. More generally, we consider successive scattering
processes with momentum and energy transfers q and ω, respectively, as shown in
Fig. 6.5. Here the intermediate state with a particle–hole pair excitation is described
by

Πk(q, ω) = qv

ω − qv
δ(εk), (6.42)

where v = ∂εk/∂k ∼ vF with vF being the Fermi velocity. This quantity is the
one-dimensional version of Eq. (4.20), and depends on the dimensionless parameter
|vF q/ω|. The case vF |q| � |ω| is called the q-limit, with Πk(q, 0) = −δ(εk). The
opposite case vF |q| � |ω| is called the ω-limit with Πk(0, ω) = 0.

The Landau interaction parameter f (pσ, p′σ ′) corresponds to the ω-limit of the
general scattering processes. The scattering amplitude in the opposite limit (q-limit)
is written as a(pσ, p′σ ′), which is related to f (pσ, p′σ ′) by

a(pσ, p′σ ′) = f (pσ, p′σ ′) −
∑

kτ

f (pσ, kτ)δ(εk)a(kτ, p
′σ ′), (6.43)

where Πk(q, ω) is replaced by its q-limit. In Fig. 6.5, the leftmost arrowed lines
have momentum p for both particle and hole, and the rightmost arrowed lines have
p′. By analogy with Eq. (6.41), we combine the spin components of a(pσ, p′σ ′)
to make the spin symmetric part A, and the antisymmetric part B. Then we obtain
from Eq. (6.43)

A = F/(1 + F), B = Z/(1 + Z). (6.44)
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Furthermore a restriction on A and B arises from the Pauli principle. In order to see
the consequence, we consider the most general scattering amplitude:

〈p1σ1, p2σ2|a|p3σ3, p4σ4〉,

where p3σ3, p4σ4 are the incoming quantum numbers, while p1σ1, p2σ2 are the
outgoing ones. Then antisymmetry associated with exchange of fermions imposes
the constraint:

〈p1σ1, p2σ2|a|p3σ3, p4σ4〉 = −〈p1σ1, p2σ2|a|p4σ4, p3σ3〉. (6.45)

In the special case of the forward scattering, we set pi = p for all i and obtain
a(pσ, pσ) = 0, which is equivalent to

A + B = 0. (6.46)

In the translationally invariant Fermi liquid, the relation analogous to Eq. (6.46) is
called the forward-scattering sum rule [10]. With the constraint Eq. (6.46), only a
single parameter remains to characterize the local Fermi liquid. We shall give the
most standard parameterization in the end of this section.

Let us derive specific heat and magnetic susceptibility by the local Fermi liquid
theory. With thermal excitation of quasi-particles, δnp is an odd function of p −
pF . Then in Eq. (6.40), the term linear in δnp is dominant, since the linear term
contributes to O(T 2), while the second-order term contributes to O(T 4). Thus the
interaction between quasi-particles can be neglected in the low temperature limit,
as in the case of the standard Fermi liquid. The impurity contribution to the specific
heat is extracted from the change in density of states ρ∗. We introduce the parameter
α = O(1/N) by

ρ∗ = Nρc(1 + α). (6.47)

Then the impurity specific heat C is of O(1) and is given by

C = 1

3
π2NρcαT ≡ γ T . (6.48)

We proceed to derive impurity contribution χs to the total spin magnetic
susceptibility χ total

s . The latter is given by

χ total
s = ρ∗

4(1 + Z)
= N

4
ρc(1 + α − Z) + O

(
1

N

)
, (6.49)
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where we have used the property Z = O(1/N). The impurity contribution, which
corresponds to the O(1) correction, is extracted as

χs = 1

4
Nρc(α − Z). (6.50)

Similarly, the impurity contribution χc to the charge susceptibility is derived as

χc = Nρc(α − F). (6.51)

These results together with the constraint A+B = F +Z +O(1/N2) = 0 lead
to the significant relation

4χs + χc = 2Nρcα = 6γ /π2. (6.52)

By using the corresponding quantities of free quasi-particles with the suffix 0, we
obtain the alternative expression

χs/χs0 + χc/χc0 = 2. (6.53)

The dimensionless quantity R ≡ χs/χs0 is called the Wilson ratio. From Eq. (6.53),
we obtain the constraint 0 < R < 2. In the Kondo limit of the Anderson model, the
charge fluctuation of f -electrons is negligible with χc → 0. In this limit we obtain
R → 2. In the opposite limit of free quasi-particles, we obtain R = 1. In more
general cases including attractive interaction, the charge fluctuation may dominate
over the spin fluctuation. Then we have R < 1. Hence R is a measure of correlation
of local electrons, and the only parameter to characterize the local Fermi liquid.

6.6 Mean Field Theory for Kondo Systems

We have seen that the singlet ground state of Kondo systems is effectively described
by the Anderson model. The strength of effective hybridization, however, is
renormalized from the bare value. It is possible to carry out the renormalization
by a kind of mean field theory [11]. The n-fold degenerate Anderson model with
U → ∞ is most suitable for this purpose, since the characteristic energy T0 is
correctly reproduced for large n. We introduce a fictitious bosonic creation operator
b† that creates the physical vacuum |0〉 with no f electrons. In addition, fictitious
fermionic operators f †

σ create the singly occupied state with spin σ . Namely, we
define

|0〉〈0| = b†b, |σ 〉〈σ | = f †
σ fσ , |σ 〉〈0| = f †

σ b. (6.54)
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Note that b† operates on the fictitious “vacuum” that has no impurity states. Any of
physical f -electron states corresponds to either |0〉 or |σ 〉, since plural occupation
of f electrons is prohibited by the condition U → ∞. Hence the operator constraint∑

σ f †
σ fσ +b†b = 1 takes account of the infinite repulsion. With this constraint, the

operators fσ and f †
σ no longer satisfy the fermionic commutation rule. On the other

hand, it is also possible to regard the constraint as a selection rule for the states in
the Fock space. Then operators b, f obey the bosonic and fermionic commutation
rules. In the latter approach, the entities represented by b, f are called auxiliary (or
slave) particles.

In the mean field theory with auxiliary particles, the original constraint is
replaced by a looser one:

∑

σ

〈f †
σ fσ 〉 + 〈b†b〉 = 1, (6.55)

where the constraint holds only as average. Furthermore, we make the approxima-
tion

〈b†b〉 → |〈b〉|2. (6.56)

Here the average 〈b〉 ≡ r should vanish in the exact theory with inclusion of the
phase fluctuation of b. However, the mean field theory makes formal analogy to the
Bose condensation represented by Eq. (5.6). It is obvious that the approximation is
justified only in the case of large number of Bose condensed particles, which is not
the case here. We discuss meaning of the mean field theory in the end of this section.

In the mean field theory, the SU(n) Anderson model with U → ∞ is simulated
by another Anderson model HMF without interaction:

HMF =
∑

kσ

[
εkc

†
kσ
ckσ + 1√

N
V r

(
c

†
kσ
fσ + f †

σ ckσ

)]

+ εf
∑

σ

f †
σ fσ + λ(nf + r2 − 1), (6.57)

where λ is the Lagrange multiplier to impose the constraint Eq. (6.55), and V and
r are taken to be real. Let us consider the general feature of optimization for the
Hamiltonian without two-body interactions. The argument is valid for arbitrary
temperature including T = 0. The statistical operator ρMF ≡ exp(−βHMF)

determines the corresponding thermodynamic potential as ΩMF = −T ln Tr ρMF.
We rewrite HMF formally as

HMF =
∑

ij

εij d
†
i dj + C, (6.58)
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where the operator d denotes either c or f electron, and C is a constant. Then the
thermodynamic potential ΩMF is written as

ΩMF = −T ln Tr
[
1 + exp(−βε̂)

]+ C, (6.59)

where ε̂ is the matrix composed of εij . Variation of ΩMF against change of HMF is
given by

δΩMF =
∑

ij

〈d†
i dj 〉δεij + δC, (6.60)

which can be checked most easily by using the eigenbasis of HMF. Note that δΩMF
does not involve variation δ〈d†

i dj 〉, even though the average depends on HMF.
This observation simplifies enormously the optimization procedure. For example,
variation of r to minimize ΩMF leads to the relation

1√
N

∑

kσ

V 〈f †
σ ckσ + c

†
kσ
fσ 〉 + 2λr = 0. (6.61)

There is a nontrivial solution r 	= 0 below a characteristic temperature TB (∼TK),
which gives a lower value for ΩMF than the trivial solution. We shall give the
nontrivial solution soon at T = 0. However, only the trivial solution r = 0 is
possible for T > TB . The second-order phase transition at T = TB is the artifact
of the mean field theory. Therefore we confine the following discussion to the case
T = 0, where the mean field theory is qualitatively correct for describing the fixed
point of the Anderson model.

We use the Green function to discuss both dynamics and statistical average. The
f electron Green function G∗

f (z) associated with HMF is derived as in Eq. (3.123),
and given for z in the upper half plane with |z| � D by

G∗
f (z) = [z − ε̃f + iΔ̃]−1, (6.62)

where renormalized quantities are defined by ε̃f = εf + λ, and Δ̃/Δ = r2. The
asterisk (*) suggests that we are dealing with quasi-particles. The density of states
ρ∗
f (ε) per spin is given by

ρ∗
f (ε) = − 1

π
ImG∗

f (ε + i0+) = Δ̃

π

1

(ε − ε̃f )2 + Δ̃2
. (6.63)

The occupation number nf is derived by

nf = n

∫ 0

−∞
dερ∗

f (ε) = n

π
arctan

(
Δ̃

ε̃f

)
= 1 − r2, (6.64)
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where the last equality comes from the constraint given by Eq. (6.55). Hence with
given nf (or εf ) and V , Eq. (6.64) determines r and λ = ε̃f − εf . In the case of
large n with nf ∼ 1, we should have Δ̃/ε̃f ∼ O(1/n), and ε̃f > 0. This feature
is in contrast to the original Kondo model with n = 2 where the resonance is at the
Fermi level: ε̃f = 0.

We next derive the average 〈f †
σ ckσ 〉 from the Green function defined by

Gcf (k, z) = 〈{c†
kσ , fσ }〉(z). Using the relation Eqs. (3.102) and (3.104) we obtain

at T = 0

〈f †
σ ckσ 〉 = Gcf (k, τ = −0) =

∫ 0

−∞
dε ρcf (k, ε), (6.65)

where ρcf (k, ε) = (−1/π) ImGcf (k, ε). On the other hand, Gcf (k, z) is decom-
posed as

Gcf (k, z) = Gfc(k, z) = V r(z − εk)
−1G∗

f (z). (6.66)

Provided the bandwidth 2D is much larger than (ε̃2
f + Δ̃2)1/2, we can use the

approximation

ρcf (k, ε) ∼ V rδ(ε − εk)ReG∗
f (ε), (6.67)

with relative error of order (ε̃2
f +Δ̃2)1/2/D after summation over k. Then we obtain

the compact result

1√
N

∑

kσ

V 〈f †
σ ckσ 〉 = nW0r ln

⎛

⎝

√
ε̃2
f + Δ̃2

D

⎞

⎠ . (6.68)

Together with Eq. (6.61), the energy scale of the impurity is derived as

√
ε̃2
f + Δ̃2 = D exp

(
− λ

nW0

)
∼ D exp

(
εf

nW0

)
, (6.69)

where we have used |ε̃f | � |εf |. The rightmost quantity reproduces T0 defined
by Eq. (6.34). If we apply the result to n = 2 with nf = 1, the leftmost quantity
becomes Δ̃ with ε̃f = 0. Thus the energy scale is correctly derived in the mean field
theory including the case of n = 2.

The mean field theory can easily derive static quantities. For example, the linear
specific heat due to the impurity is characterized by

γ = 1

3
π2ρ∗

f (0), (6.70)
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where ρ∗
f (0) is given by

ρ∗
f (0) = nΔ̃

π(ε̃2
f + Δ̃2)

= n

πΔ̃
sin2

(πnf
n

)
. (6.71)

On the other hand, the magnetic susceptibility is given by

χ = CJρ
∗
f (0) → CJn

2
f /T0 (n → ∞), (6.72)

where CJ is the Curie constant that has appeared in Eq. (6.39). This result recovers
the correct one Eq. (6.39) in the case of nf = 1, but deviates to smaller value for
nf < 1.

Regarding G∗
f (z) as describing quasi-particles, we discuss its relation to the exact

Green function Gf (z). The latter is represented by

Gf (z) = [z − εf + iΔ − Σf (z)]−1, (6.73)

in terms of the self-energy Σf (z), and with Δ = πW0. The contribution of quasi-
particles is extracted by expansion of Σf (z) around z = 0 as

Σf (z) = Σf (0) + z
∂Σf (z)

∂z

∣∣∣∣
z=0

+ O(z2), (6.74)

where the derivative Σ ′
f (0) is real in the Fermi liquid. Then we obtain

Gf (z) = afG
∗
f (z), (6.75)

where af = [1−Σ ′
f (0)]−1 is called the renormalization factor. Thus the mean field

quantities in G∗
f (z) are given as

λ = Σf (0), r2 = af = 1 − nf . (6.76)

As nf becomes closer to unity, the effective hybridization and af become smaller.
In this way the fixed point of Kondo systems is correctly described by the mean field
theory. It is the simplest framework to carry out the renormalization at T = 0, and
is accurate provided the degeneracy n is large.

Finally we discuss the meaning of the mean field theory, especially how to regard
the unjustifiable approximation Eq. (6.56). The key is the variational principle which
does not rely on the analogy with the Bose condensation. The exact thermodynamic
potential Ω of the original SU(n) Anderson model satisfies the following inequality:

Ω ≤ Ωtr + 〈HSU(n) − Htr〉tr, (6.77)
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where Htr is an arbitrary trial Hamiltonian which determines Ωtr and the sta-
tistical average 〈· · · 〉tr. Equation (6.77) is often called the Feynman (or Peierls–
Bogoliubov) inequality, the proof of which is the subject of Problem 6.6. In the
case of Htr taken as the same as HMF, the quantity r now is a variational parameter,
which needs no reference to Bose condensation. The parameters λ and r should
be determined so that the RHS of Eq. (6.77) takes the minimum. Then the solution
agrees with the one given by the mean field theory.

6.7 Dynamical Susceptibility of Kondo Impurity

The local Fermi liquid theory provides a useful relation for the dynamical sus-
ceptibility. For example, the imaginary part Imχ(ω) that describes the magnetic
relaxation process is related to the static magnetic susceptibility χ as

lim
ω→0

Im
χ(ω)

ωχ2 = π

nCJ

, (6.78)

with CJ the Curie constant. This relation is called the Korringa–Shiba relation, and
is widely used in analysis of the NMR experiment. It is not easy to derive the result
fully microscopically [12]. Here we take a phenomenological approach that includes
the f -electron states as local quasi-particles. This inclusion is along the line of the
mean field theory discussed in the previous section, but deviates from the original
local Fermi liquid theory in Sect. 6.5 where the quasi-particles consist of conduction
electrons only.

Let χ1(ω) be a hypothetical dynamical susceptibility for which the interactions
between local quasi-particles are neglected. In terms of the local density of states
ρ∗
f (ε1) due to f -electrons, χ1(ω) is given by

χ1(ω) = nCJ

∫
dε1

∫
dε2ρ

∗
f (ε1)ρ

∗
f (ε2)

f (ε1) − f (ε2)

ω − ε1 + ε2 + i0+
. (6.79)

The dynamical susceptibility χ(ω), which incorporates interaction between quasi-
particles, is related to χ1(ω) as

nCJχ(ω)
−1 = nCJχ1(ω)

−1 − Ueff, (6.80)

where Ueff is the effective repulsion between the local quasi-particles, which is
related to −Z0 in the local Fermi liquid theory. In the present scheme, however,
we have Ueffρ

∗
f (0) ∼ O(1). In the case of Lorentzian density of states given by

Eq. (6.63), we obtain

χ1(0) = nCJρ
∗
f (0), Imχ1(ω) → nCJπωρ

∗
f (0)

2, (6.81)
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the derivation of which is the subject of Problem 6.7. In the limit ω → 0, we then
obtain

Imχ1(ω)
−1 → −Imχ1(ω)/χ1(0)

2 = −πω/(nCJ ), (6.82)

which amounts to Imχ(ω)−1 since Ueff is real in Eq. (6.80). In this way we obtain
Eq. (6.78). This derivation relies on the fact that the magnetic relaxation is solely due
to independent quasi-particles in the low-energy limit. Hence, analogous relation
holds for charge and orbital susceptibilities as well.

We remark that the finite bandwidth causes deviation from the Korringa–Shiba
relation. Namely, the cutoffs at ±D modify ρ∗

f (ε) out of the Lorentzian form at high
energies, which brings about correction to χ1(0) in Eq. (6.81). Similar correction
arises also in the fully microscopic theory [13]. Therefore one should be careful
in applying the Korringa–Shiba relation to systems with large hybridization, where
possible error is of order (V/D)2 in terms of the Anderson model.

6.8 Multi-Channel Kondo Model

The singlet formation in the Kondo model is made possible only if the spin degrees
of freedom share the same number for both conduction and local electrons. Namely,
if the localized electrons have the spin S, the screening by the single conduction
band leads to the ground state with spin S−1/2. Hence the finite spin remains except
for the special case of S = 1/2. More generally, we consider the situation [14]
where the conduction electrons have the additional degeneracy n for all momentum
and spin, which is referred to as channels.

The orbital degrees of freedom indexed by l (= 1, 2, . . . , n) is assigned as the
origin of such degeneracy. The n-channel Kondo model in the simplest form is thus
defined by

HnK =
∑

kσ

n∑

l=1

εkc
†
klσ cklσ + JS ·

n∑

l=1

sl , (6.83)

where S denotes the localized spin with magnitude S, and sl is given by

sl = 1

2N

∑

kk′

∑

αβ

c
†
klασαβck′lβ , (6.84)

with N being the number of k-states and σ the Pauli matrix. The energy εk is
common to all spin σ and orbitals of conduction electrons. Notice that the simplest
model does not reflect the realistic situation that the degeneracy occurs only for the
particular crystal momentum such as k = 0 in the Brillouin zone.
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The ground states depend on relative magnitudes of localized spins and the sum
of itinerant ones, and are classified as follows:

1. singlet in the case of S = n/2,
2. residual localized spin if S > n/2,
3. overscreening of the localized spin in the case of S < n/2.

In the n-channel Kondo model, the case (3) is most interesting since it realizes
an exotic ground state. Let us first follow the argument [14] from the strong-
coupling limit J/D � 1, where D is the bandwidth of conduction electrons.
Suppose that the impurity spin has Sz = S initially. Then conduction electrons
with spin down are attracted to the impurity site because of the energy gain of
O(J ). If all channels of them gather, the screening cloud has too much negative
spin, resulting in the total spin with magnitude n/2 − S. This state then creates a
new antiferromagnetic interaction of O(D2/J ) with nearby conduction electrons
with spin up. These electrons also gather at the impurity and partially cancel the
negative total spin. As a result, the strong-coupling fixed point becomes unstable.
Since the weak-coupling fixed point is also unstable, a nontrivial fixed point should
appear somewhere between J = 0 and J = ∞. This intuitive argument has been
confirmed by the exact solution [6, 15], which uses the technique called the Bethe
ansatz [16].

As the simplest quantitative route to confirm the nontrivial fixed point, we
extend the weak-coupling scaling theory to the third order. Such perturbative
renormalization is justified if the orbital degeneracy is large: n � 1, since the
resultant fixed point then comes inside the valid range of the weak-coupling theory:
Jρ � 1 [14]. In the Rayleigh–Schrödinger perturbation theory, we deal with the
third-order effective Hamiltonian:

〈a|H3|b〉 =
〈
a|V 1

εb − H0
QV

1

εb − H0
QV |b

〉

−
∑

c

〈
a

∣∣∣∣V
1

εb − H0

1

εc − H0
QV

∣∣∣∣ c
〉
〈c|V |b〉, (6.85)

which has been given by Eq. (1.14). The Hamiltonian H0 corresponds to the kinetic
energy of conduction electrons, and V to the exchange interaction. Here the states
a, b, c belong to the model space. As in the lowest-order scaling, the projection
operator Q requires one of the intermediate conduction-electron states to have
energies near the band edges.

We concentrate on such contributions that become dominant for large n. The first
line in the RHS of Eq. (6.85) has a form familiar in the Brillouin–Wigner pertur-
bation theory. Fig. 6.6a shows one of the corresponding Goldstone diagrams with
a loop of conduction-electron lines. Such a loop acquires the factor n by summing
over degenerate orbitals, and the corresponding diagram becomes dominant over
non-loop diagrams. With the one-particle energies assigned in Fig. 6.6a, the energy
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(a) (b)

ba

1

2

Fig. 6.6 Exchange scattering processes in the third order. See text for the meaning of the folded
dashed line in (b)

denominator on the right has the value

εb − H0 → εb − (εb + ε1 − ε2) = ε2 − ε1, (6.86)

while the other energy denominator on the left has the value

εb − H0 → εb − (εa + ε1 − ε2). (6.87)

On the other hand, the term in the second line of Eq. (6.85) also has a loop
contribution. The energy denominators on the right has the value

εc − H0 → εc − (εc + ε1 − ε2) = ε2 − ε1, (6.88)

which is the same as given by Eq. (6.86). As a convenient device, one can represent
the term as in Fig. 6.6b with the folded dashed line. Then by reading off the one-
particle energies at the vertical section including the folded line, the same result as
in Eq. (6.88) follows by regarding εb as the initial energy. This situation commonly
occurs for such terms in Rayleigh–Schrödinger perturbation series that contain
model space as intermediate states [17]. In Fig. 6.6b, the energy denominator on
the left has the value

εb − H0 → εb − (εc + ε1 − ε2), (6.89)

which again becomes the same as that in Eq. (6.87) since both εc and εa represent
the same energy of the scattered electron.

If the perturbation V were the potential scattering, the product of matrix
elements in Fig. 6.6a, b would be the same. Then the two contributions cancel
each other since the overall signs are opposite according to Eq. (6.85) while the
magnitudes determined by energy denominators are identical. We have encountered
an analogous cancellation in the second-order potential scatterings described in
Fig. 6.2a, b. In the case of exchange interaction, products of matrix elements of
V are different between (a) and (b) in Fig. 6.6. Let us derive the products of spin
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operators focusing on the l = 1 component in S · sl and neglect the index l. In terms
of the spin components α, β, γ to be summed over, the spin product in (a) and (b)
takes the respective form:

(a) SαSβSγ Tr(sαsγ )sβ, (6.90)

(b) SαSγ SβTr(sαsγ )sβ, (6.91)

where the trace is over the spin states of conduction electrons, resulting in
Tr(sαsγ ) = δαγ /2. Then the spin product in (a) minus that in (b) becomes

1

2

∑

αβ

Sα
[
Sβ, Sα

]
sβ = −1

2
S · s, (6.92)

as a result of the commutation rule: [Sα, Sβ ] = iεαβγ Sγ with εαβγ being the
completely antisymmetric unit tensor. Thus the third-order effective Hamiltonian
keeps the same exchange form as in the original Hamiltonian.

In the weak-coupling scaling, the energies of incoming and outgoing conduction
electrons are much smaller than D and are neglected. In both Fig. 6.6a, b, the energy
denominators are obtained by putting either ε1 = D or ε2 = −D. Then we combine
the particle and hole contributions at the band edges as

∫ D

0
dε1

∫ 0

−D

dε2
1

(ε1 − ε2)2
→ δD

[∫ 0

−D

dε2

(D − ε2)2
+
∫ D

0

dε1

(ε1 + D)2

]
= δD

D
.

(6.93)

We thus obtain the third-order renormalization δJ (3) as

δJ (3) = δD

2D
nJ 3ρ2

c , (6.94)

where the factor n comes from summation over the orbital index l.
We shall express the result in a more general context of renormalization. Let

us introduce the scaling variable � = lnD, and the dimensionless interaction
g(D) ≡ J (D)ρc with a given cutoff energy D. Together with the second-order
scaling obtained previously, Eq. (6.94) is put into the form:

∂g

∂�
≡ β(g) = −g2 + n

2
g3, (6.95)

where β(g) is called the beta-function, which does not depend explicitly on �. The
zero of β(g) gives a fixed point of renormalization. A trivial fixed point of the model
is given by g = 0 which is unstable, as we have seen in the original Kondo model.
Namely, with either sign of g (∼0), decreasing � drives g to the positive direction.
In addition to the trivial one, a new fixed point at g = gc appears due to the O(g3)
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g (= Jρc)gc0

Fig. 6.7 The scaling flow shown by arrows in the orbitally degenerate Kondo model. The fixed
point at gc is stable against renormalization, while another fixed point at g = 0, which also appears
in the original Kondo model, is unstable

term. We obtain

gc = 2/n, (6.96)

which is much smaller than unity with large n. Thus emergence of the new fixed
point is genuine since the magnitude gc is within the reach of the perturbative
renormalization. Namely, higher order terms of O(g4), which are neglected in
Eq. (6.95), only modify the magnitude of gc by a relative amount of 1/n. This is
because O(g4) terms are smaller by the factor gc than the terms kept in Eq. (6.95).

Linearization of the scaling equation around gc = 2/n leads to

∂g

∂�
≡ β(g) ∼ 2

n
(g − gc), (6.97)

which shows that the scaling flow changes sign around the fixed point. The
combination of signs corresponds to the stable fixed point. Figure 6.7 illustrates
the stable and unstable fixed points.

One may naturally ask how the nontrivial fixed point at g = gc behaves with
decreasing degeneracy n. This question is related to another one; whether the strong-
coupling fixed point at g = ∞ remains or disappears with increasing n from unity. It
is impossible to answer these questions within the weak-coupling renormalization
theory, since one has to deal with g ∼ O(1) or even larger. As explained at the
beginning of this section, however, the intuitive approach from the strong-coupling
limit has given the correct solution. Namely, the nontrivial fixed point remains down
to n = 2, although the value of gc is no longer given by Eq. (6.96). On the other
hand, the Fermi liquid fixed point at g = ∞ is unstable for all n ≥ 2.

6.9 Realization of Multi-Channel Kondo Systems

We discuss whether the multi-channel Kondo effect can be observed experimentally.
The most notable feature is that the ground state is not a Fermi liquid, but with finite
entropy. In reality, the remaining entropy should be removed by some interactions
neglected in the theoretical model. For example, the Kondo impurities, however
dilute, will eventually interact with one another to make an ordered state. If the
ordering temperature is sufficiently low, there should be a temperature region where
the non-Fermi liquid behavior is dominant. The temperature dependence of the



134 6 Kondo Effect

resistivity ρ(T ) distinguishes the difference between ground states. Namely, while
the Fermi liquid has the T 2 law: Δρ(T ) ≡ ρ(T ) − ρ(0) ∝ T 2, the two-channel
Kondo system has the peculiar behavior [18, 19]

Δρ(T ) ∝ ±T 1/2, (6.98)

where the sign depends on the value of the bare coupling constant; the plus sign
applies to the case g > gc in Fig. 6.7. Otherwise the minus sign applies. Most
experimental work concentrates on Δρ(T ). However, due care is necessary about
the role of disorder and other effects which may give rise to apparently similar
behavior.

We discuss in the following some exemplary systems which may show the multi-
channel Kondo effect.

6.9.1 Orbital as Source of Channels

In the original argument of Nozières and Blandin [14], a possible candidate is an
impurity having two (S = 1) or three (S = 3/2) local electrons in the d shell. In
the spherical symmetry, the orbital degeneracy amounts to n = 5, which satisfies
the overscreening condition n > 2S. Actually, the crystalline anisotropy in solids
makes the effective degeneracy smaller. In the cubic symmetry, for example, we
have n = 2 for the Eg (Γ3) state, while n = 3 for the T2g (Γ5) state. Here the
spin–orbit coupling is neglected. The local ground state with two electrons in the
Eg state has S = 1 according to the Hund’s rule. The hybridization between local
and itinerant electrons occurs most easily for states with the same symmetry. Hence
in the case of S = 1, the conduction electrons with the Eg symmetry are dominant
for the spin exchange, resulting in the singlet ground state because of n = 2S = 2.
Similarly, exchange interaction in the case with S = 3/2 is dominated by conduction
electrons with the Tg symmetry, leading again to the singlet with n = 2S = 3.
Hence, Nozières and Blandin [14] were not optimistic about realization of the multi-
channel Kondo effect in crystalline solids.

6.9.2 Spin as Source of Channels

In Chap. 1 we have introduced the concept of the pseudo-spin for orbital degrees of
freedom. The concept remains valid for the plural number of localized electrons
and with full account of the spin–orbit interaction. For example, in the case of
f 2-configuration as in Pr3+, the Hund’s rule gives the ground state with S =
1, L = 5, J = 4 for spin, orbital, and total angular momenta. The cubic crystalline
anisotropy splits the J = 4 multiplets into several levels each of which is at most
threefold degenerate. The degeneracy is described in terms of the pseudo-spin 1/2
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for the doublet case, and the pseudo-spin 1 for the triplet case. To be specific, let
us consider the case of Γ3 doublet. The charge distribution of a member state is
different from that of another member. This contrasts with the spin doublet where
the time reversal changes a member state to another with the same charge density.
Thus the Γ3 doublet is an example of the non-Kramers doublet.

Among various interactions between the Γ3 doublet and conduction electrons,
most relevant here is the hybridization via intermediate configurations f 1 and
f 3. Since both intermediate states have level structures with possible degeneracy,
the matrix element of hybridization is much more complicated than that in the
Anderson model. Provided any orbital degeneracy is present in the hybridizing
conduction band, the spin degrees of freedom in conduction electrons should cause
the overscreening. With the cubic symmetry in the crystal, an orbital degeneracy is
present in the Γ8 states in the conduction band. Here, the parity must be odd (Γ −

8 )
in order to mix with f states.

On the basis of the situation described above, Cox [20] proposed that a
non-Kramers doublet may realize the two-channel Kondo effect if the relevant
degeneracy is present in the conduction band. For a candidate, Cox referred to
UBe13, which is a cubic system with possible 5f 2 configuration for U . The
Kondo effect with spin as the source of the two channels was originally called
the “quadrupolar Kondo effect.” However, the non-Kramers doublet may involve
other multipoles such as hexadecapoles under the point group. Hence it seems
appropriate to use the more general term “orbital Kondo effect,” which includes
also nonmagnetic triplet such as Γ5 in the cubic symmetry.

There are a lot of experimental reports on observation of non-Fermi liquid
behaviors in d- and f -electron systems, some of which have been ascribed to
the orbital Kondo effect. However, it is difficult to exclude other possibilities
responsible for apparent behaviors of the non-Fermi liquid. One of the main
obstacles is the difficulty to separate from the spin Kondo effect involving the higher
local states above the non-Kramers doublet, and the interplay of the ordinary Kondo
effect and disorder effect.

6.9.3 Nano-Scale Reservoir as Source of Channels

So far the most convincing result for the two-channel Kondo effect has been reported
in an artificial semiconductor nanostructure on GaAs/GaAlAs heterostructure that
is widely used as field effect transistors (FET) [21]. The two-dimensional layer has
a structure called the quantum dot where a few electrons are trapped by the potential
lower than the surrounding. Because the Coulomb interaction fixes the number of
local electrons in the quantum dot, a local spin is realized for an odd number of
electrons. The quantum dot is weakly coupled to the lead on the left by tunneling.
The dot is also weakly coupled to the right that forms a nanoscale reservoir of
electrons. The Fermi level of the right reservoir can be controlled by the gate voltage
relative to the quantum dot.
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Through hybridizations on both sides, the local spin in the dot has the exchange
interaction Jl with electrons in the left leads, while Jr with electrons in the right
reservoir. As an advantage of the artificial structure, one can control the exchange
interactions Jr by applying a bias voltage on the nanoscale reservoir. This is
because the exchange interaction changes in analogy to Eq. (6.7), where energies
are measured from the Fermi level.

In general, either left or right channel dominates over the other depending on
the magnitudes of Jlρl and Jrρr with ρl and ρr being the density of states of both
sides. Thus the ordinary Kondo effect should take place in general. With appropriate
tuning of the bias voltage, however, one may fortunately achieve the condition
Jlρl = Jrρr for the renormalized exchanges. Then the two-channel Kondo effect
may be realized. Instead of the orbital degrees of freedom, the nanoscale reservoir
on the right provides the additional channel. The difference between the ordinary
and two-channel Kondo effects appears in the scaling behaviors of the conductance
g(Vb, T ) as a function of the bias voltage Vb and temperature T . More details of
experiment and theoretical background are referred to the original paper [21] and
references therein.

Problems

6.1 Derive the second-order effective interaction Eq. (6.15) by using the commuta-
tion relation of spins.

6.2 Derive Eq. (6.21) obtained by the Born approximation for scattering.

6.3∗ Derive the Kondo temperature TK for the anisotropic Kondo model.

6.4 Derive the singlet groundstate energy E0 as given by Eq. (6.34).

6.5 Derive the zero-temperature susceptibility given by Eq. (6.39).

6.6∗ Derive the Feynman inequality given by Eq. (6.77).

6.7 Derive the results for the susceptibility given by Eq. (6.81).

Solutions to Problems

Problem 6.1
In terms of the completely antisymmetric unit tensor εαβγ , we represent the spin
commutation relation as

[
sαc , s

β
c

] = i
∑

γ

εαβγ s
γ
c .
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Substitution of the result into the LHS of Eq. (6.15), and the use of

∑

αβ

εαβγ S
αSβ = iSγ

lead to the RHS. Hence we confirm that the second-order correction is proportional
to S · sc. This means that none of new type’s interaction, such as the potential
scattering, is generated by renormalization except for the change of effective J .

Problem 6.2
A magnetic impurity located at R causes scattering of conduction electrons which
is described by the Hamiltonian Hex(R). Contributions of each impurity sum up to
the scattering probability of a conduction electron. In the Born approximation, the
transition probability, which corresponds to the inverse of the lifetime τ , is given by
the Golden rule as

1

τ
= 2π

∑

R

∑

f

|〈f |Hex(R)|i〉|2 δ(Ei − Ef ), (6.99)

where i, f refer to initial and final states of the scattering. The energy Ei = εk
of the conduction electron is near the Fermi level, and summation over final states
with Ef = Ei is performed in terms of the density of states ρc per unit volume.
Assuming that impurities are located randomly in the system, we make the following
replacement:

∑

R

∑

f

→ cimpVcrNρc

∫
dEf , (6.100)

where Vcr is the volume of the whole system. According to Eq. (6.11), Hex has the
factor 1/N with use of the plane waves. Hence the factor (VcrN/N2 = vcell appears.
Furthermore, only the same spin components contribute to |〈f |Hex(R)|i〉|2, which
leads to the numerical factor

∑

α

〈
S2
αs

2
α

〉
= 3 · 1

4
· 1

4
= 3

16
. (6.101)

In this way we obtain Eq. (6.21).

Problem 6.3∗
We first consider the technically easier case J⊥ > Jz > 0, and introduce the
parameters J⊥z, α so that Jz = J⊥z sinhα and J⊥ = J⊥z coshα. Then using
δJ⊥ = J⊥z sinhα δα, we integrate the scaling equation (6.26) to obtain

∫ ∞

α0

dα

coshα
= −J⊥zρc

∫ TK

D0

dD

D
, (6.102)
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where the suffix 0 is attached to indicate the bare values in the integration range.
As the renormalization of D proceeds down to TK, we should have α → ∞. The
integral can be performed explicitly by introducing u = expα as follows:

∫
dα

coshα
= 2

∫
du

u2 + 1
= 1

i
ln

(
u − i

u + i

)
= 1

2i
ln

(
sinhα − i

sinhα + i

)
, (6.103)

where we have taken the square inside the first logarithm to obtain the rightmost
expression. The logarithm there is pure imaginary since the argument has the unit
modulus with the phase given by −2 tan−1(1/ sinhα). Then we obtain to Eq. (6.30)
after exponentiating ln(D/TK) in Eq. (6.102).

In the case of Jz > J⊥ > 0, we put Jz = Jz⊥ coshα and J⊥ = Jz⊥ sinhα. Then
we obtain a variant of Eq. (6.102) with cosh → sinh in the LHS, and J⊥z → Jz⊥
in the RHS. With use of the variable u = expα, the integral can be performed
similarly. Using the identity

ln

(
u − 1

u + 1

)
= − tanh−1

(
1

coshα

)
, (6.104)

which corresponds to analytic continuation of the arctangent function, we obtain the
result in Eq. (6.29) [22].

Problem 6.4
We carry out the integration in Eq. (6.34) to obtain

E0

nW0
= ln

E0 − εf

E0 − εf − D
∼ ln

E0 − εf

−D
, (6.105)

where we have anticipated the result |E0 − εf | ∼ T0 � D. By exponentiating both
sides, we obtain

E0 − εf = −D exp

(
E0

nW0

)
∼ −D exp

(
εf

nW0

)
. (6.106)

In the final result we have approximated the exponent using T0/nW0 � 1.

Problem 6.5
Putting h ≡ gJμBH we take the derivative of both sides of Eq. (6.38) as

∂E0

∂h
= W0

∑

Jz

∫ 0

−D

dε

(E0 + ε − εf − Jzh)2

(
Jz − ∂E0

∂h

)
. (6.107)
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Taking the derivative once more, and setting h = 0 we obtain

∂2E0

∂h2
= W0

∑

Jz

∫ 0

−D

dε

[
2J 2

z

(E0 + ε − εf )3
− 1

(E0 + ε − εf )2

∂2E0

∂h2

]
. (6.108)

The integration is easily carried out. The summation over Jz for the first term with
J 2
z in the RHS leads to CJ . Namely, using Eq. (6.37) we obtain

χ = −∂2E0

∂H 2
= nW0

(
CJ

T 2
0

− 1

T0
χ

)
= nf

1 − nf

(
CJ

T0
− χ

)
. (6.109)

Rearranging the result in terms of χ , we obtain Eq. (6.39).

Problem 6.6∗
A function f (x) with positive second derivative, i.e., f ′′(x) > 0, is called
convex (downward). The exponential function belongs to this category. Let M be a
Hermitian matrix with eigenvalues Mk and corresponding normalized eigenvectors
|k〉. As a preliminary, we shall prove the inequality:

f (M)nn ≥ f (Mnn), (6.110)

where Mnn denotes a diagonal element of M with any normalized vector |n〉.
Similarly, f (M)nn denotes the diagonal element of f (M), which is a matrix defined
by the Taylor expansion:

f (x) = f0 + f1x + f2x
2 + · · · ,

with x = M . We can regard the diagonal element as an average over eigenstates
with the weight factor wk = |〈n|k〉|2. Note that

∑
k wk = 1 by normalization. We

may then write Eq. (6.110) as

〈eM 〉 ≥ e〈M〉, (6.111)

by choosing f (x) = ex . For the proof of Eq. (6.110), we start with the inequality

f (Mk) ≥ f (Mnn) + (Mk − Mnn)f
′(Mnn), (6.112)

which follows from the convex property f ′′(x) > 0 for any x. Multiplying both
sides of Eq. (6.112) by wk and summing over k, we obtain for the LHS:

∑

k

〈n|k〉〈k|f (M)|k〉〈k|n〉 = f (M)nn. (6.113)
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In the RHS, we note the relation

∑

k

〈n|k〉Mk〈k|n〉 = 〈n|M|n〉 ≡ Mnn. (6.114)

Hence the coefficient of f ′(Mnn) in Eq. (6.112) vanishes by the k-average. We thus
obtain Eq. (6.110).

In the classical case where the Hamiltonians H and HMF commute, we can take
the common eigenbasis |k〉 of these Hamiltonians, and |n〉 is chosen so that wk

becomes the Boltzmann factor. By setting M → −β(H − HMF), we obtain from
Eq. (6.111)

〈
e−β(H−HMF)

〉
=
〈
e−βH eβHMF

〉
≥ exp (−β〈H − HMF〉) . (6.115)

The average over the mean field Boltzmann weight gives the LHS as

1

ZMF
Tr
(
e−βHMFe−β(H−HMF)

)
= Z

ZMF
, (6.116)

where Z = Tr exp(−βH) is the partition function. Putting this result into
Eq. (6.115) and taking the logarithm of both sides, we obtain Eq. (6.77).

In the quantum case with non-commuting H and HMF, the proof is more
complicated. Regarding V ≡ H − HMF as perturbation, we take the expansion
as in Eq. (3.5), but now to infinite order to obtain

exp(−βH) = exp(−βHMF)U(β), (6.117)

U(β) = Tτ exp

[
−
∫ β

0
dτV (τ)

]
, (6.118)

with V (τ) = exp(τHMF)V exp(−τHMF) and where the time-ordering operator Tτ
arranges the operators appearing in the Taylor expansion in such a way that an
operator with larger τ always sits left of another with smaller τ . Taking the trace
of both sides of Eq. (6.117), we obtain

Z = ZMF〈U(β)〉 (6.119)

where 〈· · · 〉 is the statistical average with HMF. In terms of the cumulant average
〈· · · 〉c defined in Chap. 3, alternative representation is given by

ln〈U(β)〉 =
〈
Tτ exp

[
−
∫ β

0
dτV (τ)

]〉

c

− 1

= −β〈V 〉 + β

2

∫ β

0
dτ 〈V (τ)V 〉c + O(V 3), (6.120)
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where 〈V (τ)〉 ≡ 〈exp(τHMF)V exp(−τHMF)〉 does not depend on τ in the average
with respect to HMF. The O(V 2) term is non-negative. This can be recognized if
one regards the quantity

∫ β

0
dτ 〈V (τ)V 〉c =

∫ β

0
dτ 〈[V (τ) − 〈V 〉][V − 〈V 〉]〉, (6.121)

as a susceptibility or a relaxation function with t = 0, which is represented by the
spectral intensity as in Eq. (3.54). By way of Eq. (3.32) we can confirm its non-
negativity. Using the relation ln〈U(β)〉 = lnZ − lnZMF, we obtain Eq. (6.77),
provided the O(V 3) terms can be neglected.

Actually the inequality holds even with higher order terms [23]. For the proof we
scale V → αV and construct the corresponding quantity 〈Uα(β)〉. It is sufficient
to prove that the function g(α) = ln〈Uα(β)〉 is convex downward for 0 ≤ α ≤ 1,
which is equivalent to g′′(α) > 0 in the same range. What we have shown above
is the convexity at α = 0 with g′′(0) > 0. Regarding HMF + αV as the new mean
field Hamiltonian, we introduce the new scaled perturbation γV . Then we repeat
the same argument to take the second derivative in γ which is set to zero in the end,
and arrives at g′′(α) > 0. Hence Eq. (6.77) is valid without assumption of small V .

Problem 6.7
We make use of the identity

T
∑

n

1

(iεn − ε1)(iεn − ε2)

= T

ε2 − ε1

∑

n

(
1

iεn − ε1
− 1

iεn − ε2

)
= f (ε1) − f (ε2)

ε2 − ε1
(6.122)

where f (ε) is the Fermi distribution function. The identity follows from application
of Eq. (3.104). No difference arises whether f (ε) or f (ε)−1 is used in Eq. (3.104),
since the summation over Matsubara frequencies εn is absolutely convergent here.
Using this result in Eq. (6.79) we obtain

χ1(0) = −T
∑

n

(
G∗

f (iεn)
)2

, (6.123)

where the Green function is given by

G∗
f (iεn) =

∫
dε

ρ∗
f (ε)

iεn − ε
= 1

iεn − ε̃f + iΔ̃sgnεn
, (6.124)
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which has been used in Eq. (6.62) for εn > 0. In this Lorentzian form it is possible
to represent χ1(0) as

χ1(0) = − ∂

∂ε̃f
T
∑

n

G∗
f (iεn) = −∂nf

∂ε̃f
, (6.125)

Using Eq. (6.64), we obtain the first result in Eq. (6.81) at T = 0. The second
result follows straightforwardly from Eq. (6.79) by noting Im(ω − ε + i0+)−1 =
−πδ(ω − ε).
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Chapter 7
One-Dimensional Fermions
and Bosonization

Abstract This chapter deals with interaction effects in one-dimensional (1D)
fermions. Because of the restricted spatial motion, interaction effects are stronger
than in higher dimensional systems. Detailed treatment is provided for a powerful
method called bosonization, which regards density fluctuation of 1D fermions
as a bosonic object. In terms of bosonization, it is possible to discuss such
interesting states as non-Fermi liquid with power-law decay of correlation functions,
and separation of spin and charge degrees of freedom, both caused by mutual
interactions. A state with an energy gap only for the charge sector is called the
Mott insulating state, while the energy gap only for the spin sector corresponds to
superconductivity. Finally we revisit the Kondo state from the 1D point of view.

7.1 Quantum Theory of String Oscillation

In order to deal with interacting quantum particles, we start from quantization of
the string oscillation, which is regarded as collection of harmonic oscillators. The
Hamiltonian is given by

HB =
∑

q 	=0

ωq

(
nq + 1

2

)
, nq = b†

qbq, (7.1)

where b
†
q and bq are creation and annihilation operators of a boson with momentum

q and energy ωq . We shall show how the Hamiltonian HB with ωq ∝ |q| is derived
from a harmonically oscillating string.

We take a string with length L and mass density ρ. For simplicity we consider
only the longitudinal displacement along the string, and neglect the transverse
displacements from the straight line. With tension Ts of the string, the classical
energy density H is given by

H = 1

2
Ts (∇Φ)2 + 1

2
ρΦ̇2, (7.2)
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where Φ is the displacement at space-time point (x, t), ∇ = ∂/∂x and Φ̇ = ∂Φ/∂t .
The classical equation of motion gives a solution

Φ(x, t) ∝ exp [iq(x − vt)] (7.3)

with v = √
Ts/ρ. To simplify the notation we choose ρTs = 1 with appropriate unit

for the tension Ts. Then the Hamiltonian can be written as

Hstring ≡
∫ L

0
dx H = v

2

∫ L

0
dx
[
(∇Φ)2 + Π(x)2

]
, (7.4)

where Π(x, t) ≡ ρΦ̇(x, t) is the momentum density.
The quantization is achieved by imposition of the canonical commutation rule:

[Φ(x),Π(y)] = iδ(x − y). (7.5)

Here we have put t = 0, which is always the case unless stated otherwise. With
the periodic boundary condition, we make the Fourier decomposition in terms of
bosonic creation and annihilation operators as

Φ(x) =
∑

q 	=0

−i√
2|q|L

(
bq − b

†
−q

)
exp(iqx), (7.6)

Π(x) = −
∑

q 	=0

√ |q|
2L

(
bq + b

†
−q

)
exp(iqx). (7.7)

By changing the phase of boson operators such as bq → ibq , and b
†
q → −ib†

q ,
we obtain different but equivalent expression. The present choice of the phase is
most convenient to make connection to bosonization of fermion systems. It can
be checked by direct substitution that the commutation rule [bq, b†

p] = δpq is
equivalent to Eq. (7.5). After quantization, Hstring becomes equivalent to HB in
Eq. (7.1) with ωq = v|q|. The demonstration is the subject of Problem 7.1.

For later convenience, we introduce the scaled displacement field θ(x) and its
conjugate Πθ(x) as

θ(x) = √
4πΦ(x), Πθ(x) = (4π)−1/2Π(x), (7.8)

which satisfy the same canonical commutation rule. In terms of the new fields we
can write

Hstring = v

2

∫ L

0
dx

[
1

4π

(
∂θ

∂x

)2

+ 4πΠ2
θ

]
. (7.9)



7.2 Bosonization of Free Fermi Gas 145

Let us proceed to some useful relations involving b† and/or b in the exponential
function. First, with arbitrary complex number α we obtain

[b, exp(αb†)] = α exp(αb†), (7.10)

which can be confirmed by Taylor expansion of the exponential and using
[b, (b†)n] = n(b†)n−1 repeatedly. As a consequence, we obtain

b exp(αb†)|0〉 ≡ b|α〉 = [b, exp(αb†)]|0〉 = α|α〉 (7.11)

with |0〉 being the vacuum annihilated by b, and |α〉 ≡ exp(αb†)|0〉. Since |α〉
is a coherent state defined by Eq. (5.3), we conclude that the coherent state is an
eigenstate of b.

The next useful relation concerns factorization such as

exp
(
αb† + γ b

)
= exp(αb†) exp

(
γ b + 1

2
αγ

)

= exp(γ b) exp

(
αb† − 1

2
αγ

)
, (7.12)

which results from [b, b†] = 1. Equation (7.12) is often called the BCH (Baker–
Campbell–Hausdorff) formula. Derivation of the formula is the subject of Prob-
lem 7.2. Concerning the statistical average 〈· · · 〉, we obtain the relation

〈exp
(
αb† + γ b

)
〉 = exp

[
αγ

(
〈b†b〉 + 1

2

)]
. (7.13)

Problem 7.3 deals with the derivation using a little trick.
If a pair of operators A,B are both linear combination of b and b†, the

commutator [A,B] becomes an ordinary number, usually called a c-number. Then
combination of Eqs. (7.12) and (7.13) leads to valuable formulae:

〈eA〉 = exp
1

2
〈A2〉, 〈eAeB〉 = exp〈1

2

(
A2 + B2

)
+ AB〉, (7.14)

which play a central role in deriving correlation functions in Sect. 7.5.

7.2 Bosonization of Free Fermi Gas

The idea to deal with collective motion of one-dimensional fermions in terms of
bosonic degrees of freedom has a long history. The pioneering work of Tomonaga
[1] has already established the framework how to include the interaction effect
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with small momentum transfer. We first take the spinless free Fermi gas in order
to explain the Tomonaga theory. The reason for solving the trivial problem by
an elaborate framework is because the same method is useful in much more
complicated systems. The Hamiltonian is simply given by

H0 =
∑

k

εkc
†
kck, (7.15)

where we take, following Tomonaga, the free fermion spectrum εk = (k2 −
k2
F )/(2m) with appropriate units. On the other hand, in the tight-binding approx-

imation for the lattice case, the spectrum is given by εk = −2t cos k with the lattice
constant set to unity. The wave number k is restricted inside the boundary ±π of
the Brillouin zone. In the low-energy excitations, only those k near the Fermi wave
number ±kF are important. Then we expand the spectrum around εk = 0 as

εk ∼ (k − kF )vF , (k ∼ kF )

εk ∼ −(k + kF )vF , (k ∼ −kF )
(7.16)

which is illustrated in Fig. 7.1a, where the lines tangent to the parabola at k = ±kF
indicate the linear spectrum.

The key quantity in the Tomonaga’s method is the density fluctuation operator as
defined by

ρ±(q) =
∑

k

c
†
±,kc±,k+q, (7.17)

where ± indicates the sign of the momentum near μ. To indicate the momentum
branches, the indices R and L instead of ± are also used as in cRk, cLk .

The density operators defined in the real space commute with each other.
However, those defined for separate momentum branches satisfy the following

(a) (b)
k

μ

μ

k

(L)
− +

(R)

Fig. 7.1 Spectrum of one-dimensional fermions: (a) Free fermions with the chemical potential
μ set to zero, (b) Spectrum in the Luttinger model, which corresponds to extrapolation of linear
approximation near the Fermi momentum in (a) to ε → ±∞ together with shift of momenta by
±kF in left and right branches, respectively
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commutation relations:

[
ρα(q), ρα′(−q ′)

] = αδαα′δqq ′Nq, (7.18)

with α, α′ = ± and Nq ≡ qL/(2π). In order to identify the origin of non-
commutativity, we remark that both R and L branches have the lower limit of energy
corresponding to the bottom of the band. Equivalently, there is a cutoff k0 ∼ 0 in the
momentum, which gives the lower limit for the the R branch and the upper limit for
the L branch. Then the commutation relation for the R branch with q > 0 is derived
as

[ρR(q), ρR(−q)] =
∑

k>k0

(
n̂k − n̂k+q

) = Nq, (7.19)

which is independent of the cutoff k0 and the Fermi momentum kF . Similar
calculation for the L branch brings the minus sign in the RHS.

Without introducing k0, the summation over k in Eq. (7.19) becomes ambiguous.
Namely, one has to take the difference of two divergent terms in the thermodynamic
limit. In fact, Luttinger took the RHS of Eq. (7.19) as zero by considering an
infinite system with the linear spectrum [2], as illustrated in Fig. 7.1b. The R and
L branches become independent of each other for the linear spectrum without
cutoff. However, in order to have the well-defined ground state of fermions in
the thermodynamic limit, the difference of infinite quantities requires a particular
prescription. The choice of Luttinger did not match the physical requirement for the
ground state. In Tomonaga’s treatment, the linear spectrum is only an approximation
of the parabolic spectrum as illustrated in Fig. 7.1a. Tomonaga arrived at the proper
result (7.19) by assuming that the interaction does not affect the fermionic states
near the band bottom. This paradoxical consequence is an example of the quantum
anomaly, which may occur in field theory with infinite degrees of freedom [3].
Proper treatment in the thermodynamic limit has been examined in detail by Mattis
and Lieb [4]. As long as lattice models are used, such delicate issue does not appear
in condensed matter physics. In the continuum approximation, however, issues
analogous to the quantum anomaly may appear.

Simple calculation using the kinetic energy (7.15) leads to the commutation
relation:

[H0, ρα(q)] = vFαqρα(q). (7.20)

The same commutation relation ensues from another Hamiltonian

HB = 2πvF

L

∑

q>0,α=±
: ρα(q)ρα(−q) : (7.21)

in place of H0, which can be shown with use of Eq. (7.19). Here the colons (:. . . :)
is called the N-product, or normal ordering, inside which any operator annihilating
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the ground state should be moved to the right of other operators. In the present case,
the normal ordering results in

: ρα(q)ρα(−q) : ≡
{
ρR(−q)ρR(q), (α = R)
ρL(q)ρL(−q), (α = L).

(7.22)

With this convention, H0 and HB give identical dynamics for the density fluc-
tuations, although they may give different results for other quantities. Since the
interaction to be discussed later is given in terms of density fluctuations, HB is
justified for studying interaction effects. The overall use of HB is the crucial feature
in the method of Tomonaga.

The density operators are related to the Bose operators bq, b
†
q . With q > 0, the

correspondence reads

ρR(q) = √
Nqbq, ρR(−q) = √

Nqb
†
q,

ρL(q) = √
Nqb

†
−q, ρL(−q) = √

Nqb−q . (7.23)

We further introduce the Hermitian phase operator θR,L(x) by

θR(x) = 1

L

∑

q 	=0

ρR(q)
eiqx

iq
=
∑

q>0

−i√
Nq

(
bqe

iqx − b†
qe

−iqx
)

(7.24)

θL(x) = 1

L

∑

q 	=0

ρL(q)
eiqx

iq
=
∑

q>0

i√
Nq

(
b−qe

−iqx − b
†
−qe

iqx
)
. (7.25)

Using Eq. (7.23) we obtain the relations

∇θα(x) = 2πρα(x), (7.26)

[θα(x), ρβ(y)] = −iαδαβδ(x − y), (7.27)

with α = ±1 in the RHS of Eq. (7.27) depending on R or L branch. Here we have
defined the density operator ρα(x) in the real space by

ρα(x) = 1

L

∑

q 	=0

ρα(q) exp(iqx). (7.28)

Equation (7.27) shows that θα(x) and ρβ(y) are canonically conjugate variables.
The equivalent relation is given by the y-integral of Eq. (7.27) as

[θα(x), θβ(y)] = απ iδαβsgn(x − y), (7.29)
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Note that ρα(x) and θα(x) do not have the homogeneous component because q = 0
is excluded in the definition of the phase operators.

By combining the right and left branches of the density fluctuations, we introduce
the number and current operators by

N(q) = ρR(q) + ρL(q), (7.30)

J (q) = ρR(q) − ρL(q). (7.31)

In the real space we define accordingly

ρN(x) = ρR(x) + ρL(x), (7.32)

ρJ (x) = ρR(x) − ρL(x). (7.33)

In defining the corresponding phase operators, it is convenient to include the
homogeneous (q = 0) component N,J and the global phase θ̄N , θ̄J as

θN(x) = θR(x) + θL(x) + θ̄N + 2πxJ /L, (7.34)

θJ (x) = θR(x) − θL(x) + θ̄J + 2πxN/L. (7.35)

The components N = NR +NL and J = NR −NL correspond, respectively, to the
total number and current of fermions. Each of them is not a dynamical variable but a
topological one called the “winding number” [5]. The states with different winding
numbers do not mix by any bosonic excitation. Although the local fermionic number
increases with increase of θα(x) by 2π , such increase is always compensated for by
the negative change of θα(y) in other place. On the other hand, each component

θ̄α ≡ 1

2

(
θ̄N + αθ̄J

)
(7.36)

can change the topological number Nα . This is equivalent to the commutation rule:

[θ̄α, Nβ ] = −iδαβ, [θ̄α, θ̄β ] = 0, (7.37)

by analogy with Eq. (7.27). The commutation rule leads to [θ̄N ,J ] = [θ̄J , N] = 0.
The variables θ̄α are useful in constructing fermion operators in terms of bosonic
variables to be explained in the next section. We summarize the important relations
involving number and current variables.

∇θN(x) = 2π [ρN(x) + ρ̄N ], ∇θJ (x) = 2π [ρJ (x) + ρ̄J ], (7.38)

[θN(x), ρJ (y)] = [θJ (x), ρN(y)] = −2iδ(x − y), (7.39)

[θN(x), ρN(y)] = [θJ (x), ρJ (y)] = 0, (7.40)
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with ρ̄N ≡ N/L and ρ̄J ≡ J /L. Note the factor 2 in Eq. (7.38) which comes from
our definition of θN , θJ . We may alternatively use θ̌a ≡ θa/

√
2 with a = N, J for

keeping the canonical commutation rule.
Thus the Hamiltonian HB defined by Eq. (7.21) is also represented by

HB = πvF

L

∑

q>0

: N(q)N(−q) + J (q)J (−q) : (7.41)

= vF

16π

∫ L

0
dx : (∇θN)

2 + (∇θJ )
2 : . (7.42)

Problem 7.4 is concerned with the derivation and identification of canonical
variables.

7.3 Bosonic Representation of Fermions

We have seen that density excitations in free fermions with the linear spectrum are
equivalently described by free bosons with the spectrum ωq = vF |q|, provided
the ground state of fermions is well-defined. However, the fermionic creation and
annihilation operators cannot be described by bosonic operators alone, since the
complete set of bosonic operators belong to the Hilbert space with a definite number
of fermions. Together with an extra operator that connects the ground states with N

and N ±1 fermions, however, any fermionic operator can be constructed in terms of
bosonic operators. This situation was ambiguous in the early stage of bosonization,
and some confusion still remains in the literature. We take an approach [5] starting
from finite size of the system, which is capable of dealing with delicate issues in the
thermodynamic limit.

For R and L branches, we introduce the corresponding field operators by

ψR(x) = 1√
L

∑

k

cRk exp[i(k + kF )x], (7.43)

ψL(x) = 1√
L

∑

k

cLk exp[i(k − kF )x], (7.44)

where dominant contribution in dynamics comes from k ∼ 0. According to
Eq. (7.23), the density operators for the R branch are described by bosons with q > 0
only. We obtain

[bq, ψR(x)] = − 1√
Nq

e−iqxψR(x), (7.45)

[b†
q, ψR(x)] = − 1√

Nq

eiqxψR(x), (7.46)
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with the commutation relation [cRk, ρR(q)] = cR,k+q . Comparison with Eq. (7.10)
reveals that ψR(x) behaves as exponentials of bq and b

†
q with q > 0. This

observation leads to the representation

ψR(x)e
−ikF x = FR exp

⎛

⎝−
∑

q>0

1√
Nq

b†
qe

−iqx

⎞

⎠ exp

⎛

⎝
∑

q>0

1√
Nq

bqe
iqx

⎞

⎠ ,

(7.47)

where the unitary operator FR is called the Klein factor, which decreases NR by one
but does nothing to the bosonic state. Hence FR commutes with bq and b

†
q , and has

the commutation rule:

[FR, NR] = FR, [F †
R, NR] = −F

†
R. (7.48)

The Klein factors Fα (α = R, L) can be constructed in terms of the homogeneous
(q = 0) components of bosonic operators, which describe topological numbers Nα

and the global phase θ̄α . With use of Eq. (7.37), we find that Eq. (7.48) is reproduced
by the form:

Fα = Cα exp(iθ̄α) (7.49)

with a unitary operator C†
α = C−1

α , which is specified soon.
With use of the normal ordering, we obtain the concise form of Eq. (7.47) as

ψR(x)e
−ikF x = 1√

L
FR : exp[iθR(x)] := 1√

L
CR : exp[iθR(x) + iθ̄R] : . (7.50)

We can also use the alternative form

ψR(x) = 1√
2πη

FR exp[iθR(x) + ikF x], (7.51)

where η is positive infinitesimal. The equivalence between Eqs. (7.51) and (7.50)
can be seen from the BCH formula (7.12). Namely, in evaluating

∑
q>0[bq, b†

q ]/Nq ,
which appears in the commutator in Eq. (7.10), we replace the summation over q by
the integral [2π/L,∞]. In order to suppress the logarithmic divergence at q → ∞,
we introduce the convergence factor exp(−qη) and obtain

∫ ∞

2π/L

dq

2q
exp(−qη) = −1

2
ln (2πη/L) . (7.52)

After exponentiating the result we recover Eq. (7.51). This calculation shows that
the infinitesimal quantity η originates from a regularization that accompanies
calculation of the N-product. Although Eq. (7.51) has an uncomfortable form
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with the infinitesimal denominator, its compactness is convenient for practical
calculation. Due care should be taken for the meaning of η. The same line of
argument is applicable also to the L branch of fermions which are represented by
bosons with q < 0. Including the Klein factor we obtain

ψL(x) = 1√
2πη

FL exp[−iθL(x) − ikF x]. (7.53)

Any choice of Cα guarantees the anticommutation rule for the same branch α:
{ψα(x), ψα(y)} = 0 with x 	= y. This is confirmed by the BCH formula Eq. (7.12):

exp[iθα(x)] exp[iθα(y)] = exp[iθα(y)] exp[iθα(x)] exp[απ isgn(x − y)], (7.54)

where the last factor (= −1) in the RHS results from [θα(x), θα(y)] corre-
sponding to Eq. (7.29). Since Fα commutes with θα(x), the anticommutation rule
{ψα(x), ψα(y)} = 0 is confirmed. If Cα is chosen to be Hermitian: C†

α = Cα ,
similar calculation confirms the anticommuation of ψ†

α(x) and ψα(y) for x 	= y.
The general case including x = y requires a way to deal with singular behavior, but
straightforward calculation reproduces the proper relation including the δ(x − y)

term [5].
In order to reproduce the anticommutation rule: {ψR(x), ψL(y)} = 0 =

{ψR(x)
†, ψL(y)}, on the other hand, it is nontrivial how to choose Cα properly.

We try a choice

Cα = exp[iπN(1 − α)/2], (7.55)

which means CR = 1 and CL = (−1)N . We obtain

FRFL = eiθ̄R(−1)Nei−θ̄L = (−1)N−1eiθ̄Rei−θ̄L

= (−1)N−1ei−θ̄Leiθ̄R = −FLFR. (7.56)

Thus we confirm the anticommutation property of ψR and ψL; the inhomogeneous
part exp[iθα(x)] commutes for different branches R and L. The anticommutation
between ψ

†
R and ψL also follows since Cα in Eq. (7.55) is Hermitian. Note that even

if N takes even integer in the ground state, (−1)N cannot be regarded as unity in the
Fock space where ψα decreases N by one. We further remark that the choice of Cα is
not unique. For example, another choice: CR = 1 and CL = (−1)NR works equally
well. The anticommutation property of different Klein factors is summarized as

{F †
i , Fj } = 2δij , (1 − δij ){Fi, Fj } = 0, (7.57)

together with F
†
i Fi = 1.
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Fig. 7.2 The gapped
spectrum due to the
hybridization of original
fermions. The dotted lines
show the momenta ±kF . The
dashed line illustrates the R
branch shifted by −2kF μ

With these preliminaries we now deal with hybridization of R and L branches
such as

Hhyb = m

∫ L

0
dx exp(2ikF x) : ψ†

R(x)ψL(x) : +h.c., (7.58)

where the normal ordering means subtraction of possible singular terms. The
meaning is in common with that of the N-product in the bosonic case since both
focus in the change from the ground state. With inclusion of kinetic energy and
two-body interactions, the model with hybridization of R, L branches is called the
massive Thirring model. Motivation of the notation m as hybridization is its relation
to the effective mass in the relativistic spectrum with the energy gap 2m. If two-body
interactions are absent, it is possible to take exact account of the hybridization effect.
The resultant spectrum is illustrated in Fig. 7.2. After bosonization, the hybridization
is written as

e2ikF x : ψ†
R(x)ψL(x) : +h.c. = ± 2

L
: cos [θN(x)] := ± 1

πη
cos [θN(x)] ,

(7.59)

where θN(x) has been defined by Eq. (7.34). Here the product of Klein factors
remains only as the phase factor ±1. If this factor is −1, we can absorb the
minus sign by redefining CL as CL = (−1)N+1. Problem 7.5 concerns with the
demonstration in more detail.

Thus the massive Thirring model without interaction is equivalent to the follow-
ing model:

HsG = HB + 2m

πL

∫ L

0
dx : cos[aNθJ (x)] : (7.60)

with aN = 1. We rewrite the bosonized kinetic energy HB in the form

HB = vF

2

∫ L

0
dx

[
1

4π

(
∇ θ̌N

)2 + 4πΠ̌N(x)
2
]
, (7.61)
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where θ̌N (x) = θN(x)/
√

2 and Π̌N(x) = −(4π)−1∇θJ (x)/
√

2. The canonical
field variables for coordinate corresponds to θ̌N (x) and the momentum to Π̌N(x).
Here the normalization in Eqs. (7.34) and (7.35) necessitates the factor 1/

√
2. It is

also possible to choose θJ (x)/
√

2 as the canonical coordinate. Problem 7.4 deals
with identification of the canonical momentum in this case. The Hamiltonian HsG
with general value of aN is called the sine-Gordon model. Using the equivalence
of the sine-Gordon model with aN = 1 to the free massive Thirring model, exact
solution has been obtained for some interacting models. Sections 7.8 and 7.9 give
such examples.

In the classical sine-Gordon model where θN and ΠN are c-numbers, the spatial
configuration of θN(x) = ±π as x → ±∞ is called a soliton. The reverse change
of the phase is called the anti-soliton. After quantization, these phase configurations,
as described by Eq. (7.47), correspond to fermion excitations. In contrast to common
examples such as the Cooper pair where an even number of fermions constitute a
bosonic entity, the sine-Gordon model provides a reverse example that the coherent
bosonic excitations form a fermion.

7.4 Inclusion of Forward Scattering

Equipped with the formalism which may look too heavy for free fermions, we now
consider two-body interactions in spinless systems. Let us first take the following
form:

Hint = 1

2L

∑

q,α=±

[
2g2 : ρα(q)ρ−α(−q) : +g4 : ρα(q)ρα(−q) : ], (7.62)

where g2 describes the interaction between R and L branches, while g4 describes
the one within each branch. In the total Hamiltonian HB + Hint, the whole effect of
g4 is taken into account by the shift

v∗
F = vF + g4/(2π) (7.63)

of the Fermi velocity. We assume that g4 satisfies the property v∗
F > 0. On the other

hand, g2 gives rise to off-diagonal terms with respect to the indices ± (or R, L) of
the density operators. Note that the g2 term does not annihilate the non-interacting
ground state even with normal ordering. Hence the ground state is reconstructed.

We shall diagonalize the total Hamiltonian H = HB+Hint by a kind of canonical
transformation. It is convenient to introduce the positive parameter K and the
renormalized velocity vs by the following relations:

vs

K
= v∗

F + g2

2π
, vsK = v∗

F − g2

2π
, (7.64)
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where v∗
F is the shifted Fermi velocity defined by Eq. (7.63). In the weak-coupling

limit g2 = 0, the parameters become K = 1 and vs = v∗
F . Assuming |g2| < 2πv∗

F ,
which gives vs > 0, we take the sum and difference of the two relations above to
obtain

v∗
F

vs
= 1

2

(
1

K
+ K

)
= cosh 2φ, (7.65)

g2

2πvs
= 1

2

(
1

K
− K

)
= sinh 2φ, (7.66)

where φ and K are related by K = exp(−2φ). It is obvious that the dimension-
less interaction g2/v

∗
F is characterized by a single parameter. Eliminating vs in

Eqs. (7.65) and (7.66), we indeed obtain such parameterization:

g2

2πv∗
F

= tanh 2φ = 1 − K2

1 + K2 , (7.67)

which is equivalent to

K =
√

2πv∗
F − g2

2πv∗
F + g2

. (7.68)

Derivation of these results is the subject of Problem 7.6. As we show later in
Eq. (7.73), φ corresponds to the (imaginary) rotation angle in the Bogoliubov
transformation.

Using Eq. (7.64), and the density and current operators defined by Eqs. (7.30)
and (7.31), we rewrite the total Hamiltonian including Hint as

H = πvs

L

∑

q>0

: 1

K
N(q)N(−q) + KJ(q)J (−q) :

= vs

2

∫ L

0
dx : 1

K

(
∂Φ

∂x

)2

+ KΠ(x)2 : (7.69)

with Φ(x) = θN(x)/
√

8π and Π(x) = √
8πΠN(x). This form of H motivates us

to introduce the quantities

Φ̃ = √
KΦ, Π̃ = Π/

√
K, (7.70)
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which corresponds to renormalized coordinate and momentum of the bosonic field.
The commutation relation [Φ̃, Π̃ ] = [Φ,Π ] shows that Φ̃ and Π̃ are qualified as
canonical variables for quantization. We further introduce new quantities by

Ñ(q) = ρ̃R(q) + ρ̃L(q) = √
KN(q), (7.71)

J̃ (q) = ρ̃R(q) − ρ̃L(q) = 1√
K

J(q), (7.72)

which give the relation between the density operators as

(
ρ̃R(q)

ρ̃L(q)

)
=
(

coshφ,− sinhφ
− sinhφ, coshφ

)(
ρR(q)

ρL(q)

)
, (7.73)

from the sum and difference of Eqs. (7.71) and (7.72). As we shall show shortly,
the Hamiltonian is diagonalized in terms of the new variables ρ̃α(q). The setup
by Eq. (7.73) is an example of the Bogoliubov transformation for bosons. The
imaginary angle in hyperbolic functions is contrasted with the case of fermions
where a real angle specifies the transformation as discussed in Problem 5.2
around Eq. (5.95). The unitary nature of the transformation Eq. (7.73) appears in
conservation of commutation relations for density operators. We note, however, that
the 2 × 2 matrix in Eq. (7.73) is not unitary.

The unitary operator that represents this Bogoliubov transformation as ρ̃α(q) =
U†ρα(q)U is given by

U = exp

⎡

⎣
∑

q 	=0

2πφ

Lq
ρR(q)ρL(−q)

⎤

⎦ ≡ exp S. (7.74)

The proof of equivalence to Eq. (7.73) is the subject of Problem 7.7. The unitarity
of U is recognized by the relation S† = −S. The transformed Hamiltonian reads

H̃ ≡ U†HU = 2πvs

L

∑

q>0,α

: ρ̃α(q)ρ̃α(−q) : , (7.75)

which is diagonal in α. The form of H̃ is the same as that of free particles except
for the replacement vF → vs. The normal ordering is taken for the original density
operators. If one redefines the normal ordering in terms of ρ̃, the only difference is a
constant term appearing in Eq. (7.75), which corresponds to the shift in the ground
state energy.
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7.5 Momentum Distribution Near the Fermi Level

A great advantage of the bosonization method is its ability to derive correlation
functions of one-dimensional fermion systems. Let us first consider the right-going
(R) free spinless fermions. The basic quantity is the phase correlation function

gR(x − y) = 〈θR(x)θR(y)〉, (7.76)

which can be derived at T = 0 explicitly as

gR(x) =
∑

q>0

2

Nq

exp(iqx) = ln
L

2π(η − ix)
, (7.77)

with use of Eqs. (7.24) and (7.52). Then the exponentiated correlation function can
be derived as

〈eαθR(x)eβθR(0)〉 = C exp [αβgR(x)] = C

(
L

2π(η − ix)

)αβ

, (7.78)

C = exp

〈
1

2

(
α2 + β2

)
θR(0)

2
〉

(7.79)

with the cumulant property Eq. (7.14).
Referring to Eq. (7.51), we can represent the fermion annihilation operator ψR(0)

by putting β = i in exp[βθR(0)]. Similarly, putting α = −i in exp[αθR(x)] gives
ψ

†
R(x) exp(ikF x). Hence for free fermions we find the correlation function, or the

density matrix, as

〈ψ†
R(x)ψR(0)〉0 ∼ (x + iη)−1 exp(−ikF x), (7.80)

where we have discarded the numerical factor, and put the suffix 0 in the average to
emphasize the non-interacting state. This result should agree with the one derived
by the elementary method for right-going free fermions. In fact, the inverse Fourier
transform of the momentum distribution:

nαk = 〈c†
αkcαk〉0 = θ(−αk), (7.81)

which is the step function, leads to the result given by Eq. (7.80) for α = +1 (R
branch). Here η (> 0) works as the convergence factor in exp(−ikx + ηk) at k →
−∞. When we consider finite x, we can neglect η in Eq. (7.80).
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We proceed to interacting spinless fermions where the unitary transformation
U = exp S constructs the new ground state |0̃〉 = U |0〉 from that of free fermions
|0〉. The density matrix is now given by

ρR(x, 0) ≡
〈
0̃|ψ†

R(x)ψR(0)|0̃
〉
=
〈
U†ψ

†
R(x)ψR(0)U

〉

0
. (7.82)

In terms of the transformed variables with tilde such as θ̃R = U†θRU we obtain

U†ψR(x)U ≡ ψ̃R(x) = 1√
2πη

exp[iθ̃R(x) + ikF x]FR. (7.83)

Explicit calculation is most concisely performed by going to density (N ) and current
(J ) variables since the unitary transformation then amounts just to multiplication of
K±1/2. Namely, we obtain

θ̃R(x) = 1

2

[
θ̃N (x) + θ̃J (x)

]
,

θ̃N (x) = √
KθN(x), θ̃J (x) = θJ (x)/

√
K, (7.84)

The phase correlation functions in the non-interacting case are given by

〈θN(x)θN(0)〉0 = 〈θJ (x)θJ (0)〉0 = gR(x) + gL(x) = ln

(
L

2πx

)2

, (7.85)

where gL(x) = gR(x)
∗ represents the left-going branch.

Note that ρR(x, 0) exp(ikF x) is an odd function of x as in the non-interacting
case given by Eq. (7.80). This property is most easily seen by writing

ρR(x, 0) = 1

2πη

〈
exp

(
−iθ̃R(x) + iθ̃R(0) + 1

2

[
θ̃R(x), θ̃R(0)

]
− ikF x

)〉

0

= 1

2πη
exp

(
−1

2

[〈
θ̃R(x) − θ̃R(0)

]2
〉

0
+ 1

2
iπsgn(x) − ikF x

)
,

(7.86)

where we have used Eq. (7.14) and the commutation rule Eq. (7.27). We now use
Eqs. (7.84) and (7.85) to obtain

〈0̃|ψ†
R(x)ψR(0)|0̃〉eikF x ∼ sign(x) exp

[
1

4

(
K + 1

K

)
ln

(
L

2πx

)2
]

∼ x−1|x|−γ (7.87)
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with γ = v∗
F /vs − 1 = (K + K−1)/2 − 1 = 2 sinh2 φ as deduced from Eqs. (7.65)

and (7.66). Note that γ vanishes without interactions. By Fourier transform we
obtain the singular behavior at the Fermi points as

nαk = 〈0̃|c†
αkcαk|0̃〉 ∼ −sign(αk)|k|γ + const. (7.88)

Note that the physical momentum is given by k + αkF . Because of γ > 0, the
discontinuity at the Fermi surface disappears by the interaction effect.

7.6 Separation of Spin and Charge

We now come to the point to deal with interacting fermions with the spin degrees of
freedom. The kinetic energy is given by

H0 = vF

∑

k,±,σ

[
(±k − kF)c

†
±,k,σ c±,k,σ

]

→ HB = 2πvF

L

∑

q>0,α=±,σ

: ρα,σ (q)ρα,σ (−q) : , (7.89)

where the density operators have the spin index σ (=↑,↓), and are defined by

ρ±,σ (q) =
∑

k

c
†
±,k,σ c±,k+q,σ . (7.90)

We combine the spin components to construct the quantities

ρα(q) = [ρα↑(q) + ρα↓(q)]/
√

2, (7.91)

σα(q) = [ρα↑(q) − ρα↓(q)]/
√

2, (7.92)

with α = ± or, equivalently, R and L. Accordingly the kinetic energy is rewritten as

HB = 2πvF

L

∑

q>0,α=±
: ρα(q)ρα(−q) + σα(q)σα(−q) : , (7.93)

where the charge ρ and the spin σ degrees of freedom appear separately. If the
interaction Hamiltonian also has separate components for spin and charge, the total
Hamiltonian can be diagonalized by two Bogoliubov transformations: one for spin
and the other for charge. The renormalized velocity of spin and charge excitations
are in general different from each other. Namely, if the interaction constants g2, g4
are different for spin and charge components, the Bogoliubov angles are also
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different. In this case, it appears as if spin and charge move independently from each
other, in strong contrast with the case in Fermi liquids. This situation is specific to
one-dimensional systems, and is called the spin–charge separation.

The total Hamiltonian H is decomposed into spin and charge parts as H = Hρ +
Hσ . Each part is given in the real space by

Hρ = vρ

2

∫ L

0
dx : 1

Kρ

(
∂Φρ

∂x

)2

+ KρΠρ(x)
2 : (7.94)

Hσ = vσ

2

∫ L

0
dx : 1

Kσ

(
∂Φs

∂x

)2

+ KσΠs(x)
2 :, (7.95)

where Φξ ,Πξ (ξ = ρ, s) are defined by analogy with the spinless case as in
Eqs. (7.8), (7.91), and (7.92). Accordingly the phase field θ(x) = √

4πΦ(x)

introduced in Eq. (7.8) for Nand J components is generalized as

θNρ = 1

2

(
θR↑ + θL↑ + θR↓ + θL↓

)
, (7.96)

θJρ = 1

2

(
θR↑ − θL↑ + θR↓ − θL↓

)
, (7.97)

θNs = 1

2

(
θR↑ + θL↑ − θR↓ − θL↓

)
, (7.98)

θJs = 1

2

(
θR↑ − θL↑ − θR↓ + θL↓

)
. (7.99)

The dynamics of spin and charge are described by these four independent variables.
These one-dimensional fermion systems are called Tomonaga–Luttinger liquids.
The gapless excitation spectrum is common with the Fermi liquid in three dimen-
sions, but the different velocities of spin and charge are the distinct feature in
Tomonaga–Luttinger liquid.

Let us return to the momentum distribution function but including spins now. The
right-going (R) fermions with spin down has the phase

θR↓ = 1

2

(
θNρ + θJρ − θNs − θJs

)
(7.100)

from Eqs. (7.96) to (7.99). In the correlation functions of N and J , the interaction
effect enters through the factors K and 1/K , respectively. Hence by the same
reasoning that leads to Eq. (7.88), we find that the momentum distribution nk↓ has
the singular exponent

γ = v∗
F

vs
− 1 = 1

4

(
Kρ + K−1

ρ + Kσ + K−1
σ

)
− 1 (7.101)
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which is positive as in Eq. (7.88), and vanishes without interactions. The same
exponent applies to the up spin as well.

We can derive spin and charge correlation functions in a similar manner. For
example, the transverse spin correlation function, which involves the components
s± = sx ± isy and the wave number 2kF , are derived from

〈U†ψ
†
L↑(x)ψR↓(x)ψ†

R↓(0)ψL↑(0)U 〉0, (7.102)

where the unitary transformation U generalizes the one in Eq. (7.82) to systems with
spin. The x-dependent phase θR↓(x) + θL↑(x) + 2kF x appears after bosonization.
Another component with the wave number −2kF is derived by exchanging R and L
in Eq. (7.102). We obtain from Eqs. (7.96) to (7.99)

θL↑ = 1

2

(
θNρ − θJρ + θNs − θJs

)
. (7.103)

Then together with Eq. (7.100) we can derive the relevant phase. Namely, after the
unitary transformation by U , we obtain

θ̃R↓ + θ̃L↑ = θ̃Nρ − θ̃J s = √
KρθNρ − 1√

Kσ

θNs. (7.104)

Following the same steps as in Eqs. (7.78) and (7.87), we obtain the exponent

ν = Kρ + K−1
σ , (7.105)

which appears in the transverse spin correlation function as

〈s−(x)s+(0)〉 ∼ |x|−ν cos(2kF x). (7.106)

On the other hand, the longitudinal correlation function, which involves the
z component of the spin, is contributed by ψ

†
Lσ (x)ψRσ (x) with the same spin

component and the wave number 2kF . The exchange of R and L branches gives the
opposite wave number −2kF . The bosonization accompanies the following phase,
apart from 2kF x, as given by

θ̃Rσ + θ̃Lσ = θ̃Nρ + σ θ̃Ns = √
KρθNρ + σ

√
KσθNs, (7.107)

where σ in the RHS is interpreted as σ as σ = ±1. Thus the exponent of the
longitudinal correlation function is given by Kρ + Kσ . Provided the rotational
invariance is present for the spin direction, the longitudinal exponent must agree
with the transverse one Kρ + K−1

σ . This requirement leads to the remarkable
relation:

Kσ = K−1
σ = 1, (7.108)
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which is the same as the non-interacting case. In the repulsive Hubbard model,
for example, the rotational invariance is present. Then we have Kσ = 1, but
the spin correlation function itself involves Kρ which is in general different from
unity. Note that the algebraic decay of the correlation function is the necessary
condition for Kσ = 1. As we shall discuss in Sect. 7.8, the exact solution with a
superconducting ground state has a spin gap, and is characterized by Kσ = 1/2.
Such superconducting state is realized in the attractive Hubbard model as an
example of Kσ 	= 1 in spite of the rotational invariance.

Similar analysis can be performed for the charge correlation function. Prob-
lem 7.8 deals with its asymptotic behavior.

7.7 Backward and Umklapp Scatterings

In addition to the forward scattering, we now take into account scatterings from
R to L branches, and vice versa. Such scatterings involve the change ±2kF of
the momentum, as illustrated in Fig. 7.3. The backward scattering shown in (a)
conserves the total momentum of two particles, while the Umklapp scattering shown
in (b) accompanies the momentum change by ±4kF . Such change is allowed if
the crystal momentum is conserved, as will be discussed in more detail later. In
the present section, we analyze effects of these scatterings with large momentum
transfer.

The annihilation operators with momenta near the Fermi surfaces R and L are
written as ψRσ (x), ψLσ (x) with spin σ . According to the uncertainty principle,
the definite coordinate x for a particle is incompatible with definite momentum
±kF . We assume therefore that the range of momenta superposed around ±kF is
much smaller than 2kF . The Hamiltonian for the backward scattering in Fig. 7.3a is
described in the real space by

H1 = 1

2

∫ L

0
dx
∑

σ

[
g1‖

(
ψ

†
Rσψ

†
LσψRσψLσ + h.c.

)

+ g1⊥
(
ψ

†
Rσψ

†
Lσ̄ ψRσ̄ ψLσ + h.c.

)]
, (7.109)

Fig. 7.3 Scatterings with
large momentum transfer: (a)
backward scattering with
coupling constant written as
g1; (b) Umklapp scattering
with coupling constant g3

μ

(b)(a)
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with σ̄ ≡ −σ , and the argument x has been omitted in all field operators. The term
with g1‖ can be rewritten also in the forward scattering form:

−g1‖ψ†
RσψRσψ

†
LσψLσ , (7.110)

by exchanging two Fermi operators. The explicit form is given by

H1‖ = −g1‖
2L

∑

q,α=±
: ρα(q)ρ−α(−q) + σα(q)σ−α(−q) : (7.111)

which indeed looks like a forward scattering.
Similar treatment for the g1⊥ interaction results in forward scattering with spin-

flip. Namely, g1⊥ can be regarded as an exchange interaction. Using Eq. (7.51), we
bosonize the g1⊥ terms to obtain

g1⊥
∑

σ

ψ
†
Rσψ

†
Lσ̄ ψRσ̄ ψLσ + h.c. = g1⊥

(πη)2
cos(2θNs), (7.112)

where θNs has been defined in Eq. (7.98). The Klein factors have been omitted since
their product can be made unity.

Let us proceed to the Umklapp scattering illustrated in Fig. 7.3b. Here two
fermions both of which are near the left Fermi surface (point) transfer to the region
near the right Fermi surface, and vice versa. The Pauli principle allows Umklapp
scattering only for different spins. The change of total momentum of two fermions
is ±4kF , and scattering is forbidden in general. However, if the density of fermions
with spin 1/2 is such that the average number per site is unity, the Umklapp
scattering is possible since it conserves the crystal momentum. Namely, with the
lattice constant taken as unity, the density nσ per spin is given by nσ = 2kF /(2π).
Then nσ = 1/2 corresponds to 4kF = 2π , which is the smallest reciprocal lattice.
As mentioned in Sect. 2.3, the unit occupation per site is precisely the condition
under which the Mott insulating state is realized. More details will be discussed in
the next section.

The Hamiltonian for the Umklapp scattering is given by

H3 = g3⊥
2

∫ L

0
dx
∑

σ

ψ
†
Rσψ

†
Rσ̄ ψLσ̄ ψLσ + h.c.. (7.113)

Bosonization with use of Eq. (7.51) leads to the form

g3⊥
∑

σ

ψ
†
Rσψ

†
Rσ̄ ψLσ̄ ψLσ + h.c.

= g3⊥
(πη)2 cos

[
2θNρ + (4kF − 2π)x

]
, (7.114)
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where −2πx has no effect with the integer coordinate x. This form is convenient in
the continuum approximation for x since Eq. (7.113) is then finite only if 4kF = 2π .
Otherwise Eq. (7.114) oscillates with continuum x, and Eq. (7.113) vanishes after
integration over x.

We have seen that the Hamiltonian with large momentum transfer is still
separated into spin and charge parts. In the spin part, the backward scattering
acts like the exchange interaction. In the charge part, the Umklapp scattering
becomes effective with the particular density n = 1. The important feature of large
momentum transfer is the appearance of cosine terms with θNs for spin, and θNρ for
charge. These terms give rise to excitation gaps as discussed below.

7.8 Superconductivity and Mott Insulator

In one-dimensional electron systems, the bosonization method makes it possible to
take exact account of interaction phenomena such as superconductivity and Mott
insulator. These topics are discussed in this section.

Let us start with superconductivity which has gapless charge excitations, but a
finite gap for spin excitations. We have seen in Sect. 7.6 that the forward scattering
does not lead to the excitation gap. Hence the backward scattering should be
responsible for the spin gap in the Tomonaga–Luttinger liquid. It is known
from another method of exact solution, which is called the Bethe ansatz [6], that
the Hubbard model with negative U has the superconducting ground state. By
combining the idea of renormalization, we can make contact with exact solutions
obtained by bosonization and Bethe ansatz.

We analyze in detail the bosonized form of the backscattering term

2g1⊥
(2πη)2

∫ L

0
dx cos [2θNs(x)] , (7.115)

which has appeared in Eq. (7.112). As we have discussed in Sect. 7.4, Bogoliubov
transformation with the forward scattering parameter K is performed by Eq. (7.70).
For the spin liquid, this amounts to θ̃Ns = θNs/

√
Kσ . In the special case Kσ = 1/2,

the cosine term in Eq. (7.115) becomes

cos
√

2θ̃Ns(x). (7.116)

Similar cosine form, with θ̃Ns(x) replaced by θ̌N (x) = θN(x)/
√

2, has appeared
in Eq. (7.59), which describes hybridization between R and L branches of free
fermions. Hence the spin liquid with Kσ = 1/2 behaves as non-interacting fermions
with hybridization gap. Physically, the gap is for spin excitations. On the other
hand, the charge excitation remains gapless unless the Umklapp scattering becomes
effective. This contrasting situation for spin and charge excitations corresponds to
the superconducting state.
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Fig. 7.4 Illustration of
strong-coupling limit for
understanding nature of
excitation gaps: (a)
superconducting state with
charge gap Δc = 0, and spin
gap Δs 	= 0; (b) fermionic
picture of the anisotropic
XXZ spin model with vacant
site corresponding to down
spins. Repulsion among
fermions leads to Δc 	= 0,
which means Δs 	= 0 in the
original spin model; (c) Mott
insulating state with Δc 	= 0
and Δs = 0

(a)

(b)

(c)

Equations (7.67) and (7.111) combine to give the relation

g1‖
2πv∗

F

= −1 − K2
σ

1 + K2
σ

= −3

5
, (7.117)

where the last equality follows from Kσ = 1/2 [7]. Since g1‖ < 0 is related
to negative U , it is not surprising that superconductivity is realized in this case.
Nevertheless, the exact result in the special case Eq. (7.117) demonstrates the power
of bosonization method. Figure 7.4a illustrates a spin configuration that leads to
gapless charge and gapped spin excitations in the strong-coupling limit.

We now go a bit aside to discuss another origin of the spin gap, which is due
to anisotropy in the exchange interaction. In contrast with the bosonization so far
discussed, we map here conversely the spin excitations to fermionic ones. Let us
consider the following one-dimensional spin chain:

H = J
∑

i

(
Sx
i S

x
i+1 + S

y
i S

y

i+1 + ΔzS
z
i S

z
i+1

)
, (7.118)

with the anisotropy parameter Δz which is often called the XXZ model. The
Heisenberg model corresponds to Δz = 1, while the Ising model corresponds to
the limit Δz = ∞. The case Δz = 0 is called the XY model, which can be solved
exactly by introducing fictitious fermion operators. Namely, we define ψ

†
i and ψi
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for each site i as

Sz
i = ψ

†
i ψi − 1/2 ≡ ni − 1/2, (7.119)

S−
i = Sx

i − iSy
i = ψi exp

⎛

⎝iπ
i−1∑

j=1

nj

⎞

⎠ , (7.120)

with i = 1 for the left end, and i = N for the right end of the chain. We obtain the
commutation relations

{ψi, ψj } = 0, {ψ†
i , ψj } = δij , (7.121)

from the spin commutation rule. Hence ψ†, ψ represents the creation and anni-
hilation operators of fermions, and the corresponding transformation is called the
Jordan–Wigner transformation. This is closely related to the Klein factor described
in Eq. (7.55). In terms of the fictitious fermions, Eq. (7.118) is rewritten as

H = J

2

∑

i

[
ψ

†
i ψi+1 + ψ

†
i+1ψi + 2Δz

(
ni − 1

2

)(
ni+1 − 1

2

)]
, (7.122)

where the anisotropy parameter Δz represents the two-body interaction of fermions.
With Δz = 0, the system is a collection of free fermions with the spectrum

εk = J cos k,

with −π < k ≤ π . In the ground state, N/2 fermions occupy the negative energy
states with the Fermi wave number kF = π/2.

With Δz > 1, the spin excitations have an energy gap. In the fermionic repre-
sentation Eq. (7.122), the gap appears as the charge excitation gap. As illustrated in
Fig. 7.4b, the charge gap in the strong-coupling limit corresponds to crystallization
of fermions, which are originally up spins, due to the repulsion at nearest neighbors.

We now return to one-dimensional electron systems with spin 1/2, and focus
on the charge gap caused by the Umklapp scattering. With special value of the
interaction strength, which corresponds to the charge version of Eq. (7.117), exact
solution is possible. We introduce the charge fermions with R and L branches. Then
Eq. (7.114) for the Umklapp scattering is written in terms of R and L phase variables
as

θNρ = (θRρ + θLρ)/
√

2, θNJ = (θRρ − θLρ)/
√

2. (7.123)

By analogy with the spin fermion case, the system with Kρ = 1/2 is mapped to free
fermions with hybridization of R and L branches. This corresponds to the special
value g2ρ/(2πv∗

F ) = 3/5 for the forward scattering of charge. The notation g2
has been introduced in Eq. (7.62), for the spinless system, as the strength of the
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forward scattering involving R and L branches. Here we have added the index ρ to
represent the corresponding interaction that leads to renormalization of vF to vρ as in
Eq. (7.94). On the other hand, the spin part remains a gapless Tomonaga–Luttinger
liquid. This state corresponds to the Mott insulating state, which is illustrated in
Fig. 7.4c in the strong-coupling limit.

It is intuitively clear that the ground states for exactly solvable cases with
g1‖/(2πv∗

F ) = −3/5 and g2ρ/(2πv∗
F ) = 3/5 are connected smoothly to the strong-

coupling limit illustrated in Fig. 7.4. If we start from the weak-coupling limit, on the
other hand, it is more subtle to discuss the formation of an energy gap. The relevant
method in the latter case is the renormalization group for the sine-Gordon model,
which we shall not discuss in this book because of its complexity [8]. It is known
that in the case with g1‖ < 0 or g2ρ > 0, the absolute value of the relevant coupling
increases by renormalization. Namely, the Tomonaga–Luttinger liquid is unstable
against gap formation no matter how small is the bare interactions.

7.9 Kondo Effect Revisited

We reconsider Kondo effect from the view point of bosonization. It turns out that
a special value of the exchange interaction, which is called the Toulouse limit,
makes the Kondo model equivalent to a one-dimensional free fermion model. The
Toulouse limit corresponds to an impurity version of the free fermion model with
hybridization of R and L branches, which has been discussed as the massive Thirring
model in Sect. 7.3. Moreover we can derive exact solution for the two-channel
Kondo model for another special value of the exchange interaction [9].

There are two ways to map the Kondo model to a one-dimensional impurity
model. In the first way, one takes the positive spatial coordinate that corresponds to
the radial coordinate r in three dimensions. A positive wave number k is assigned
to the outgoing s-wave, while a negative k is assigned to the incoming one. In
the second way, the incoming s-wave with exp(−ikr) is interpreted as having
the negative spatial coordinate −r . In this version the spatial coordinate has both
positive and negative values, while the wave number is restricted to be positive.
Namely, the Kondo model is mapped to an impurity model where the magnetic
impurity at the origin interacts with right-going one-dimensional electrons. Here we
adopt the latter mapping.

7.9.1 Bosonization and Fictitious Fermions in Kondo Model

The location of an impurity is at one of discrete lattice points with the lattice
constant a. Hence the dimensionless field operator

√
aψσ (x) of conduction electron

is interpreted as the annihilation operator of a Wannier state at site x. Then Hexc with
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the exchange anisotropy in Eq. (6.25) is written as

Hexc = 1

2
JzSza

[
ψ

†
↑(0)ψ↑(0) − ψ

†
↓(0)ψ↓(0)

]

+ 1

2
J⊥a

[
S+ψ†

↓(0)ψ↑(0) + S−ψ†
↑(0)ψ↓(0)

]
≡ Hz + H⊥. (7.124)

On the other hand, the bosonization of conduction electrons is most conveniently
performed for continuous space. We interpret the slowly varying wave function
in the continuum space as the envelope function multiplying the Wannier orbitals
at each lattice point. Since the restriction |q| < π/a is imposed on the envelope
function in the first Brillouin zone, we identify η = a and regard that the high
momentum region affects the low-energy physics only through renormalization of
model parameters.

The kinetic energy of the right-going conduction electrons is given by

Hc = vF
∑

kσ

(k − kF )c
†
kσ ckσ , (7.125)

which is measured from the Fermi level. The bosonized expression reads

Hc = vF

4π

∫ L

0
dx

[(
∂θc

∂x

)2

+
(
∂θs

∂x

)2
]
, (7.126)

where the phase fields θc, θs are defined by

θc = 2−1/2(θ↑ + θ↓), θs = 2−1/2(θ↑ − θ↓), (7.127)

ψσ (x) = Fσ√
2πa

exp[iθσ (x)], (7.128)

with Fσ being the Klein factor.
In terms of the phase field θs , the spin density of conduction electrons is given

by

1

2

∑

σ±1

σψ†
σ (x)ψσ (x) = 1

2
√

2π

∂θs(x)

∂x
, (7.129)

with reference to Eq. (7.26). Then Hexc is rewritten as

Jza

2
√

2π
Sz

∂θs

∂x
+ J⊥

4π

[
S+F †

↓F↑ exp(i
√

2θs) + h.c.
]
, (7.130)

where θs is at x = 0. The charge bosons do not interact with the localized spin.
Hence we discard θc, and consider only the spin bosons hereafter.
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Let us first consider the effect of Sz. By analogy with the phase shift in potential
scattering, we account for the distortion of wave functions by a local unitary
transformation

Uγ = exp [iγ θs(0)Sz] . (7.131)

Then ∂θs/∂x is transformed as

U†
γ

∂θs

∂x
Uγ = ∂θs

∂x
− 2π

a
γ Szδ(x, 0), (7.132)

with reference to Eqs. (7.10) and (7.27). Here δ(x, 0) means the Kronecker delta.
The spin bosons undergo a change in kinetic energy as

U†
γ

(
∂θs

∂x

)2

Uγ =
(
∂θs

∂x

)2

− 4π

a
γ Sz

∂θs

∂x
δ(x, 0) +

(
2πγ

a

)2

δ(x, 0). (7.133)

By a choice of γ such that γ = Jzρc/
√

2 with ρc = a/(2πvF ), the second term in
the RHS cancels with the first term in Eq. (7.130). More details of this cancellation
is the subject of Problem 7.9. The third term in Eq. (7.133) is a constant, and can be
neglected.

We shall show that the transverse exchange H⊥ is transformed to a hybridization
form of local and itinerant fermions which represent the spin degrees of freedom. In
U†
γ S+Uγ , we can put Sz = −1/2 in Uγ , and Sz = 1/2 in U†

γ . Then we obtain

U†
γ S±Uγ = exp [∓iγ θs(0)] S+, (7.134)

where the result for S− can be obtained from (U†
γ S+Uγ )

†. Hence in the special case

of γ = √
2 − 1, which is equivalent to Jzρc = 2 − √

2, we obtain

U†
γH⊥Uγ = 1

4π
J⊥

[
S+F †

↓F↑ exp(iθs) + h.c.
]

(7.135)

from Eq. (7.130). Here exp(iθs) constitutes the annihilation operator of spin
fermions if supplied with appropriate Klein factor Fs . It is reasonable to restrict Fs

as F †
↓F↑ ∝ Fs since F

†
↓F↑ decreases the spin of conduction electrons by unity, and

leaves intact the total number. To preserve the bosonic commutation property of
ψ

†
↓(x)ψ↑(x), we choose for the proportionality constant another Klein factor F †

S so
that

F
†
↓F↑ = F

†
S Fs. (7.136)

In this setting S+F †
S acts on the local spin space, and causes the unit increase of the

z-component. The increase is now interpreted as creation of a local spin fermion, so
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that the sum of conduction and local spin fermion numbers is conserved. We thus
define the dimensionless spin fermion operators as

cs(x) = Fs exp[iθs(x)]/
√

2π, S+F †
S = d†, FSS− = d. (7.137)

It can be easily checked by use of Eq. (7.57) that d and cs(x) indeed obey the
anticommutation rule for fermions. Then we finally obtain the form:

U†
γH⊥Uγ = 1√

8π
J⊥

[
d†cs(0) + c†

s (0)d
]

≡ Hhyb, (7.138)

which displays hybridization between local and itinerant fermions at the lattice site
x = 0.

Thus the original Kondo exchange Hexc with the special value Jzρc = 2 −√
2 ∼

0.6 is transformed to the hybridization form between spin fermions d and cs , without
any further interaction. The kinetic energy of spin fermions is rewritten from the
bosonic form as

Hkin = vF
∑

k

kCs(k)
†Cs(k), (7.139)

where

Cs(k) = 1√
N

∑

x

cs(x) exp(−ikx), (7.140)

with N being the number of lattice sites. Such bilinear form of the Hamiltonian
Hkin + Hhyb has been discussed already in Sect. 3.7, and the corresponding Green
function has been obtained in Eq. (3.123). Then it is clear that the ground state is
a resonant state of spin fermions without the energy gap. Since the weak-coupling
result shows renormalization flow to larger Jz, the value of Jzρc should cross the
special value 2−√

2 during the renormalization where the exact solution is possible.
The ground state of the weak-coupling Kondo model is thus confirmed to be a local
Fermi liquid as has been discussed in Chap. 6.

7.9.2 Two-Channel Kondo Model

We now turn to the two-channel Kondo model, which is the n = 2 version of
Eq. (6.83). We demonstrate that the nontrivial fixed point is obtained exactly for
the special value of the exchange interaction Jz at Jzρc = 1 [9]. We begin with the
bosonized form of the conduction-electron operator as

ψlσ (x) = Flσ√
2πa

exp[iθlσ (x)], (7.141)
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where l = ±1 describes the orbital degrees of freedom, which we now call “flavor”,
and Flσ is the corresponding Klein factor. In place of the phase fields θlσ (x), it is
convenient to introduce new phase fields θc, θs, θf and θsf by

θc = 1

2
(θ+↑ + θ+↓ + θ−↑ + θ−↓) = 1

2

∑

lσ

θlσ , (7.142)

θs = 1

2
(θ+↑ − θ+↓ + θ−↑ − θ−↓) = 1

2

∑

lσ

σ θlσ , (7.143)

θf = 1

2
(θ+↑ + θ+↓ − θ−↑ − θ−↓) = 1

2

∑

lσ

lθlσ , (7.144)

θsf = 1

2
(θ+↑ − θ+↓ − θ−↑ + θ−↓) = 1

2

∑

lσ

lσ θlσ . (7.145)

The inverse transformation characterized by the same unitary matrix gives the
original phase fields θlσ in terms of the new ones. Then the kinetic energy is given
by

Hc = vF

4π

∫ L

0
dx
∑

α

(
∂θα

∂x

)2

, (7.146)

with the index α indicating c, s, f , and sf . The spin density of conduction electrons
is given by

1

2

∑

l,σ±1

σψ
†
lσ (x)ψlσ (x) = 1

4π

∂θs(x)

∂x
, (7.147)

to be compared with Eq. (7.129). Thus the exchange interaction is rewritten as

Hz = Jza

4π
Sz

∂θs

∂x
, (7.148)

H⊥ = J⊥
4π

S+
∑

l

F
†
l↓Fl↑ exp(iθs + ilθsf ) + h.c. (7.149)

We proceed to rewrite the products of Klein factors in Eq. (7.149) so as to
represent the change ΔNα of new fermions. We have met a similar case with spin
fermions in Eq. (7.137). Using Eqs. (7.142)–(7.145) which also determine linear
relations between the changes ΔNα and ΔNlσ , we obtain

ΔN+↑ − ΔN+↓ = ΔNs + ΔNsf , (7.150)

ΔN−↑ − ΔN−↓ = ΔNs − ΔNsf . (7.151)
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Then the corresponding Klein factors are converted as [10]

F
†
+↑F+↓ = F

†
sf F

†
s , F

†
−↑F−↓ = Fsf F

†
s , (7.152)

F
†
+↓F+↑ = FsFsf , F

†
−↓F−↑ = FsF

†
sf , (7.153)

which are to be compared with Eq. (7.136) for the original Kondo model.
We now make the unitary transformation generated by U1 which corresponds to

Uγ in Eq. (7.131) with γ = 1. We concentrate on the special case with Jzρc = 1.
Then U

†
1HzU1 is canceled by the second term in the RHS of Eq. (7.133), and θs

disappears from U
†
1H⊥U1. Namely, we obtain

U
†
1H⊥U1 = J⊥√

8π
S+Fs

[
csf + c

†
sf

]
+ h.c., (7.154)

where new fermion operators csf , c
†
sf at x = 0 have been introduced. Note that

Eq. (7.154) does not conserve the number of sf fermions. For general sites x, we
define

csf (x) = Fsf exp[iθsf (x)]/
√

2π, (7.155)

and its Hermitian conjugate. By using the local spin fermion operator defined by
d† ≡ S+Fs , and the anticommutation property of fermion operators, we obtain a
peculiar form of hybridization:

U
†
1H⊥U1 = 1√

8π
J⊥(d† − d)(csf + c

†
sf ) ≡ Hhyb. (7.156)

It is possible to diagonalize the Hamiltonian exactly with Jzρc = 1 because of
its bilinear form in fermion operators. In order to account for the mixing of particle
and hole components in Hhyb, we employ the Bogoliubov transformation. Since
only the species sf couples with local fermions, we introduce the corresponding
fermion operator in the momentum space by the first Bogoliubov transformation

(
C+(k)
C−(k)

)
= 1√

2

(
1 1
1 −1

)(
Csf (k)

Csf (−k)†

)
≡ U

(
Csf (k)

Csf (−k)†

)
(7.157)

with Csf (k) being the Fourier transform of csf (x) in Eq. (7.155), and the matrix
U = (σx + σz)/

√
2 is unitary. The kinetic energy of the sf fermions is given by

Hkin =
∑

k

vF k : Csf (k)
†Csf (k) := 1

2

∑

k

∑

p=±
vF k : Cp(k)

†Cp(k) :, (7.158)
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with the particle–hole symmetry. The factor 1/2 in the rightmost side comes from
double counting of the same state as a particle state and hole one. This is analogous
to the case of the four-component theory of superconductivity with same factor 1/2
in Eq. (5.63). The details of calculation are the subject of Problem 7.10. Note that
d† − d couples only with C+(k), so that C−(k) fermions remain intact.

We further introduce the two-component field d± by the same Bogoliubov
transformation:

φd ≡
(
d+
d−

)
= U

(
d

d†

)
= 1√

2
(1 + iσy)

(
d

d†

)
, (7.159)

with the unitary matrix U defined in Eq. (7.157). A closely related two-component
field is defined by ψ1 = d+ and ψ2 = id− both of which are real (Hermite) operators
with ψ

†
i = ψi . These real operators obey the anticommutation rule: {ψi, ψj } = δij

with i, j = 1, 2. Such fermionic objects are called Majorana particles, which make it
explicit that a complex fermion is composed of two real objects. The transformation
to the Majorana basis is written as

(
ψ1

ψ2

)
≡ ψ =

(
1 0
0 i

)
φd = 1√

2

(
1 1
−i i

)(
d

d†

)
. (7.160)

It is instructive to derive the Green function of decoupled local fermions in
various bases introduced above. Let us take the Hamiltonian Hd = εdSz where
the Zeeman splitting of the local spin state is written as εd , which also corresponds
to the energy level of the d-fermion as seen from the expressions:

Sz = 1

2
(d† d)σz

(
d

d†

)
= 1

2
ψ†σyψ = −1

2
φ

†
dσxφd . (7.161)

Thus the Green function in the (d, d†) basis is given by (z − εdσz/2)−1. Note that
the hole component 1/(z+ εd/2) follows from the particle component 1/(z− εd/2)
by the replacement εd → −εd . Namely, the same state appears twice as particle and
hole states. Hence the weight factor 1/2 is necessary in the counting of fermionic
states as in Eq. (7.158). In the φd basis we obtain the Green function as

G0(z) = (z + εdσx/2)−1, (7.162)

which will be most conveniently used in the following calculation.
We now consider the transformed form of Eq. (7.156) as given by

Hhyb = −1√
8πN

J⊥
∑

k

d
†
−C+(k) + h.c.. (7.163)
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The bilinear form of the Hamiltonian composed of Hkin and Hhyb is characterized
by the matrix h as given by

h =
⎛

⎝
−εdσx/2 V̂ † 0

V̂ h+ 0
0 0 h−

⎞

⎠ , (7.164)

where h± are both N × N diagonal matrices with elements εi = vF ki . The
momentum ki runs from −π/a to π/a with the interval 2π/(Na), where a is the
lattice constant. The hybridization enters through V̂ which is the N × 2 matrix with
the first column being all zero, and all the N elements in the second column are the
same: V = −J⊥/(

√
8πN). Hence the 2 × 2 Green function G2(z) including the

hybridization effect is given by

G2(z)
−1 = G0(z)

−1 − V̂ †(z − h+)−1V̂ ≡ G0(z)
−1 − Σ(z), (7.165)

where Σ(z) is a 2×2 matrix in which the only nonzero element is Σ(z)22. Following
the same procedure as in Eq. (3.120), we obtain for Im z > 0 and |z| � D,

Σ(z)22 = i (J⊥)2 ρc/8 ≡ iΔ2 (7.166)

with ρc = a/(2πvF ). Hence G(z) is explicitly obtained as

G2(z)
−1 =

(
z εd/2

εd/2 z + iΔ2

)
= z + 1

2
εdσx − i

2
(1 − σz)Δ2. (7.167)

This concise result contains essential features of the two-channel Kondo model,
including the nontrivial fixed point discussed in Chap. 6.

To appreciate the implication of Eq. (7.167) we first consider the most interesting
case εd = 0, where G2(z) becomes diagonal. The spectral intensity is given by

ρ+(ε) = − 1

π
ImG11(ε + i0+) = δ(ε), (7.168)

ρ−(ε) = − 1

π
ImG22(ε + i0+) = 1

π

Δ2

ε2 + Δ2
2

. (7.169)

Namely, the d+ particle is decoupled from other fermions, and form the sharp level
at the Fermi level.

The impurity susceptibility at temperature T � Δ2 is now derived as

χz(T ) =
∫ β

0
dτ 〈Sz(τ )Sz〉 = 1

2

∫
dε
∫

dε1
f (ε1) − f (ε)

ε − ε1
ρ−(ε)ρ+(ε1)

=
∫

dε

4π

tanh(βε/2)

ε
· Δ2

ε2 + Δ2
2

∼ 1

2πΔ2
ln

Δ2

T
, (7.170)
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with use of Eq. (7.161). The logarithmic T -dependence is one of the typical
signatures of the non-Fermi liquid state. Here and in the following, the integration
over ε is, unless otherwise specified, always limited within the range of fermion
spectrum ±vFπ/a.

We proceed to derivation of the entropy. The thermodynamic potential Ω of the
system is given by

Ω = −1

2
T Tr ln(1 + e−βh) = −1

2
T

∫
dε ln(1 + e−βε)Tr δ(ε − h)

= −1

2

∫
dεf (ε)

1

π
Im Tr ln(ε + i0+ − h), (7.171)

where f (ε) = (eβε + 1)−1, and the overall factor 1/2 compensates the double
counting of each state as particle state and hole one. In order to separate the impurity
contribution, we resort to the matrix identity:

Tr ln(z − h) = ln det(z − h)

= − ln detG2(z) − ln detG+(z) − ln detG−(z), (7.172)

with G±(z) = (z − h±)−1. The impurity contribution ΔΩ is obtained from
Eq. (7.171) by subtraction of the C±-fermion parts associated with G±(z). In the
most interesting case εd = 0, the result becomes particularly simple, as given by

ΔΩ = −
∫

dε

2π
f (ε)Im

(
ln

1

ε + i0+
+ ln

1

ε + iΔ2

)
. (7.173)

We thus obtain for T � Δ2,

ΔΩ = −T

2
ln 2 − π2

12
· T

2

Δ2
+ const. (7.174)

with use of partial integration to obtain the first term in the RHS. For the second
term in the RHS we have used the Sommerfeld expansion formula:

∫ ∞

−∞
dεf (ε)g(ε) =

∫ 0

−∞
dεg(ε) + π2

6
T 2g′(0) + O(T 4), (7.175)

with a smooth function g(ε). Thus the extra entropy ΔS due to the impurity is
derived for T � Δ2 as

ΔS = − ∂

∂T
ΔΩ = 1

2
ln 2 + π2

6
· T

Δ2
. (7.176)
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In the opposite limit T � Δ2, we obtain ΔS = ln 2 immediately from Eq. (7.173),
as expected for a fermionic impurity state.

With εd = 0, the ground state is degenerate as signaled by Eq. (7.168); the
energy is independent of the occupancy of the level. One may naively expect
that the corresponding entropy ΔS is ln 2. However, we have obtained ΔS =
ln

√
2 + O(T/Δ2). In the thermodynamic limit N → ∞, the fractional entropy

persists down to T = 0. This strange result is naturally interpreted as due to the
decoupled Majorana particle ψ1 = (d + d†)/

√
2 [9]. Since the Majorana particle is

half of the ordinary fermion, the associated entropy is also half of the fermionic one.
The specific heat derived from Eq. (7.176) is linear in T as in the Fermi liquid. On
the other hand, perturbation theory in Jzρc − 1 shows that the specific heat behaves
as T ln T once Jz deviates from the special value Jzρc = 1 [9].

Now we consider the case of εd 	= 0, where the ground state is no longer
degenerate. We obtain

ΔΩ = −
∫

dε

2π
f (ε) tan−1 εΔ2

ε2 − ε2
d/4

∼ −πΔ2

48ε2
d

T 2 + O(T 4) + const..

(7.177)

The rightmost result is valid at low temperatures T � |εd |. Note that the T -linear
term in the entropy (or specific heat), which is given by −∂ΔΩ/∂T , grows endlessly
as |εd | approaches to zero. In the opposite range T � |εd | of temperature, ΔΩ is
dominated by O(T 4) terms, and depends hardly on εd . This is understood easily
from the integral with f (ε) in Eq. (7.177).

Let us summarize how the Zeeman splitting εd controls the behavior of the
system. With εd 	= 0, ψ1 and ψ2 are never decoupled, and the Majorana particle
does not show up in the ground state. Namely, there is no fractional entropy and no
divergence in χz in contrast to that in Eq. (7.170). In terms of the renormalization
group, εd is a relevant parameter that drives the system away from the nontrivial
fixed point. However, in the temperature range |εd | � T � Δ2, the system
cannot feel the Zeeman splitting, and behaves as if it is in the non-Fermi liquid
state described by Eq. (7.176).

Problems

7.1 With quantization of Φ(x) and Π(x), Hstring in Eq. (7.4) appears as a bosonic
system. Demonstrate the equivalence to HB in Eq. (7.1).

7.2 Prove the BCH formula given by Eq. (7.12).

7.3∗ Prove the expectation value for the exponentiated bosonic operators as given
by Eq. (7.13).
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7.4 Represent the Hamiltonian HB in terms of θJ and ∇θN as proportional to the
field coordinate and the momentum, respectively.

7.5∗ Demonstrate the equivalence between the free massive Thirring model and the
sine-Gordon model.

7.6 Derive the results given by Eqs. (7.67) and (7.68).

7.7 Show that the operator defined by Eq. (7.74) generates the same transformation
as given by Eq. (7.73).

7.8 Derive the exponent controlling the asymptotic behavior of the charge correla-
tion function.

7.9 Derive the condition for γ in Eq. (7.131) so that the new Hamiltonian U†(H +
Hexc)U does not contain the interaction term with Jz.

7.10 Derive the kinetic energy of sf fermions in the rightmost side of Eq. (7.158)

Solutions to Problems

Problem 7.1
By using the Fourier decomposition we obtain

∇Φ(x) =
∑

q

q√
2|q|L

(
bq + b

†
−q

)
exp(iqx), (7.178)

which leads to the integral

∫ L

0
dx (∇Φ)2 =

∑

q

|q|
2
(bq + b

†
−q)

(
b−q + b†

q

)
. (7.179)

Similar calculation using Eq. (7.7) gives another integral:

∫ L

0
dx Π(x)2 =

∑

q

|q|
2
(bq − b

†
−q)

(
b−q − b†

q

)
. (7.180)

Hence the sum of Eqs. (7.179) and (7.180) gives the bosonic form HB in Eq. (7.1)
with ωq = v|q|.
Problem 7.2
We shall first show the equality

eA+B = eAeBe−[A,B]/2, (7.181)
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with the assumption that [A,B] is a c-number. It is convenient to introduce an
auxiliary function F(g) = egABe−gA with the parameter g. The derivative with
respect to g is given by

dF

dg
= egA[A,B]e−gA = [A,B], (7.182)

where we have used the condition that [A,B] commutes with any operator.
Considering the initial condition F(0) = B, we obtain immediately F(g) =
B + g[A,B]. This result is equivalent to

egAB = (B + g[A,B]) egA. (7.183)

On the other hand, another auxiliary function J (g) = egAegBe−g2[A,B]/2 has the
g-derivative

dJ

dg
= egA (A + B − g[A,B]) egBe−g2[A,B]/2 = (A + B)J (g), (7.184)

where the last equality follows from exchange between egA and B with use of
Eq. (7.183), and resulting cancellation of g[A,B]. Then integration with the initial
condition J (0) = 1 leads to J (g) = eg(A+B). By putting g = 1, we arrive at
Eq. (7.12).

Problem 7.3∗
We first consider the special case α = γ . Putting φ = b + b†, we derive the
generating function

G(α) = 〈exp(αφ)〉 =
∞∑

n=0

αn

n! 〈φn〉, (7.185)

which corresponds to the LHS of Eq. (7.13). The moments 〈φn〉 in the generating
function can be derived by considering the harmonic oscillator under a fictitious
external field x, which is defined by

H(x) = ωb†b + xφ = ω
(
b† + x

ω

) (
b + x

ω

)
− x2

ω
. (7.186)

Here b+x/ω is interpreted as the annihilation operator in a harmonic oscillator with
its origin shifted. Since the commutation relation is independent of x, the spectrum
of H(x) is the same as that of H(0) except for the uniform shift −x2/ω. Therefore
the partition function is derived as

Z(x) ≡ Tre−βH(x) = Z(0) exp(βx2/ω). (7.187)
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From the form of exp[−βH(x)] as given by Eq. (7.186), the moments are derived
as

(−β)n〈φn〉 = 1

Z(0)

∂nZ(x)

∂xn

∣∣∣∣
x=0

, (7.188)

where the x-dependence of Z(x) is given explicitly by Eq. (7.187). Hence we obtain

〈φ2m〉 = (2m)!
m!

(
1

βω

)m

, (7.189)

while the moments with odd power are all zero. Substituting the result into the RHS
of Eq. (7.185), we obtain

G(α) =
∞∑

m=0

α2m

m! (βω)
−m = exp

(
α2

βω

)
= exp

(
α2

2
〈φ2〉

)
, (7.190)

where 〈φ2〉 = 2/(βω) has been used. Considering 〈φ2〉 = 2〈b†b〉 + 1, we obtain
Eq. (7.13) in the case of α = γ .

We recall that cumulants 〈φn〉c are defined by

lnG(α) =
∞∑

n=1

αn

n! 〈φn〉c. (7.191)

Comparison with Eq. (7.190) shows that only the second-order cumulant 〈φ2〉c =
〈φ2〉 is nonzero. In other words, the set of operators φn have expectation values
analogous to the Gaussian distribution of φ. We refer to Problem 3.9 for the classical
Gaussian distribution.

In the general case α 	= γ in Eq. (7.13), expansion of the LHS reveals that only
those terms survive which have equal powers of α and γ . Namely, all nonzero terms
are obtained by replacing α2 in the previous case by αγ . Hence the replacement
α2 → αγ in Eq. (7.190) gives Eq. (7.13) in the general case.

Problem 7.4
From Eqs. (7.30)–(7.35), we can represent quantities with indices R, L in terms of
N, J . Namely, we obtain

HB = πvF

L

∑

q>0

: N(q)N(−q) + J (q)J (−q) : (7.192)

= vF

16π

∫ L

0
dx : (∇θN)

2 + (∇θJ )
2 : . (7.193)
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The relation

1

2
[θa(x), ρb(y)] = −iδabδ(x − y), (7.194)

with a, b = N, J is regarded as the canonical commutation rule of field coordinate
and momentum, as described by Eq. (7.5). If one regards θ̌N (x) = θN(x)/

√
2 as the

canonical field coordinate, then the canonical momentum −Π̌N(y) is identified as
ρJ (y)/

√
2 = (2

√
2π)−1∇θJ (y). It is also possible to regard θ̌J (x) = θJ (x)/

√
2

as the field coordinate. Then the corresponding momentum −Π̌J (y) is identified
as ρN(y)/

√
2 = (2

√
2π)−1∇θN(y). In this way we obtain the two equivalent

canonical sets such as

HB = vF

2

∫ L

0
dx : 1

4π

(
∇ θ̌N

)2 + 4πΠ̌2
N : (7.195)

= vF

2

∫ L

0
dx : 1

4π

(
∇ θ̌J

)2 + 4πΠ̌2
J : . (7.196)

With use of the scaling described by Eq. (7.8), we recover the harmonic oscillator
form Eq. (7.4) where v is understood as vF .

Problem 7.5∗
Let us choose CR = 1 and CL = (−1)N+1 for the Klein factor, and bosonize the
fermion operators as

ψR(x) = 1√
L

: exp[iθ̂R(x)] :, (7.197)

ψL(x) = (−1)N+1 1√
L

: exp[−iθ̂L(x)] :, (7.198)

with θ̂α(x) = θα(x) + θ̄α for α = R,L. Then we obtain

ψ
†
R(x)ψL(x) = (−1)N

L
: exp[−iθ̂N (x)] :, (7.199)

ψ
†
L(x)ψR(x) = (−1)N

L
: exp[iθ̂N (x)] :, (7.200)

In deriving Eq. (7.200) we have used the BCH formula in the form

: eA :: eB : = eA+eA−eB+eB− = eA+eB+eA−eB− exp[A−, B+]
=: exp(A + B) :, (7.201)

where A± and B± represent the boson creation (+) and annihilation (-) parts, and
the c-number [A−, B+] corresponds to [θL−(x), θR+(x)] = 0. Thus the final result
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is given by

ψ
†
R(x)ψL(x) + ψ

†
L(x)ψR(x) = (−1)N

2

L
: cos[θN(x)] : . (7.202)

In the absence of the current J = NR−NL, we obtain the even integer for N = 2NR.
Adding the fermionic kinetic energy as described by HB, we recognize that the
massive Thirring model in the J = 0 sector is mapped to the sine-Gordon model
given by Eq. (7.60).

Problem 7.6
We obtain Eq. (7.67) by taking the ratio of Eqs. (7.65) and (7.66). Next we utilize
Eq. (7.67) to obtain:

1 ± tanh 2φ = 2πv∗
F ± g2

2πv∗
F

. (7.203)

The ratio of two quantities with ± leads to

1 − tanh 2φ

1 + tanh 2φ
= e−4φ = K2 = 2πv∗

F − g2

2πv∗
F + g2

. (7.204)

Alternatively, the ratio of two relations in Eq. (7.64) immediately gives Eq. (7.68).

Problem 7.7
For any pair of operators X, Y we have the relation

eYXe−Y = X + [Y,X] + 1

2
[Y, [Y,X]] + · · · ≡ (exp YL)X, (7.205)

where YLX ≡ [Y,X] is defined by analogy with the Liouville operator used in
Sect. 3.6. The first equality is confirmed by comparing the term YnXYm in the
Taylor expansion of exp(±Y ), and in the multiple commutators. The last concise
expression is confirmed by the Taylor expansion of exp(YL) and the definition of
YL.

Let us consider the particular case: X = b
†
q, Y = −S with

S =
∑

q>0

φ
(
bqb−q − b†

qb
†
−q

)
, (7.206)

with reference to Eq. (7.23). Then with U = exp S as defined by Eq. (7.74), we
obtain

U†bqU = bq

(
1 + 1

2
φ2 + · · ·

)
− b

†
−q

(
φ + 1

6
φ3 + · · ·

)

= bq coshφ − b
†
−q sinhφ. (7.207)
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In a similar manner we obtain U†b
†
−qU = b

†
−q coshφ − bq sinhφ. Rewriting the

relation in terms of ρα(q), we obtain Eq. (7.73).

Problem 7.8
The component in the density operator ρ(x) which contribute around the wave
number 2kF is given by

ρ(x) →
∑

σ

ψ
†
Lσ (x)ψRσ (x). (7.208)

The phase for each spin component after bosonization is given by Eq. (7.107), which
is the same as the phase for the longitudinal (z) component of the spin correlation.
Hence the exponent of the charge correlation function becomes Kρ + Kσ which
agrees with the exponent of the longitudinal spin correlation.

Problem 7.9
The second term in the RHS of Eq. (7.133) takes the same form as the interaction
term with Jz given by Eq. (7.130). Taking account of the coefficient in the kinetic
energy in Eq. (7.126), we obtain the zero-sum condition:

a

2
√

2π
Jz − vF

4π
4πγ = 0, (7.209)

which leads to Jzρc = √
2γ. Here ρc = a/(2πvF ) is the density of states for

conduction electrons with the s-wave.

Problem 7.10
The kinetic energy in Eq. (7.158) is rewritten as

Hkin = 1

2

∑

k

vF k : Csf (k)
†Csf (k) − Csf (−k)†Csf (−k) :

= 1

2

∑

k

vF k : (Csf (k)
†, Csf (−k)

) ( Csf (k)

Csf (−k)†

)
:, (7.210)

where the factor 1/2 compensates the double counting in summation over k. The
second line follows from the anticommutation property of fermions together with
the normal ordering. Using the unitary matrix U given by Eq. (7.157), we obtain

(
Csf (k)

†, Csf (−k)
)
U†U

(
Csf (k)

Csf (−k)†

)
= (

C+(k)†, C−(k)†
) (C+(k)

C−(k)

)
,

(7.211)

which reproduces the form in the rightmost side of Eq. (7.158).



References 183

References

1. Tomonaga, S.: Prog. Theor. Phys. 5, 349 (1950)
2. Luttinger, J.M.: J. Math. Phys. 4, 1154 (1963)
3. Alvarez-Gaume, L., Vazquez-Mozo, M.A.: An Invitation to Quantum Field Theory. Springer,

Berlin (2012)
4. Mattis, D.C., Lieb, E.H.: J. Math. Phys. 6, 304 (1965)
5. Haldane, F.D.M.: J. Phys. C 14, 2585 (1981)
6. Bethe, H.: Z. Phys. 71, 205 (1931)
7. Luther, A., Emery, V.J.: Phys. Rev. Lett. 33, 389 (1974)
8. Coleman, S.: Phys. Rev. D 11, 2088 (1975)
9. Emery, V.J., Kivelson, S.: Phys. Rev. B 46, 10812 (1992)

10. Zarand, G., von Delft, J.: Phys. Rev. B 61, 6918 (2000)



Chapter 8
Fractionalization of Charge and Statistics

Abstract In this chapter we discuss most drastic non-perturbative effects of
interactions. Namely, mutual interactions may give rise to new quasi-particles which
are neither fermions nor bosons. We begin with the best-known example of such
quasi-particles with a fractional charge in two-dimensional electron systems. Then
we proceed to a simpler case in one dimension, where exact solution including such
exotic quasi-particles is available. The bosonic description discussed in the previous
chapter is regarded as the long-wavelength limit in the more general framework for
non-perturbative effects. We emphasize that the fractional charge does not contradict
with indivisible nature of electron, since such quasi-particle emerges as a collective
phenomenon out of a non-perturbative ground state. All the treatment in this chapter
use the first quantization formalism.

8.1 Magnetic Flux and Geometric Phase

Electron is regarded as indivisible. Protons and neutrons, which used to be believed
indivisible, turn out to be composite of quarks. However, electron is still regarded
as indivisible like other leptons such as neutrino. In condensed matter, on the other
hand, this viewpoint is not always valid. Great varieties arise in condensed matter
because the ground state, or vacuum in condensed matter, depends on systems.

The view on physical vacuum has changed with time. For a long time until
1930, there was little doubt that vacuum is vacant with no structure. By his
association of negative energy states with the antiparticle [1], Dirac put forward
a groundbreaking view on vacuum.1 The Dirac picture was, however, modest as
compared with the picture of vacuum after 1960. Namely, by analogy with the
BCS theory of superconductivity, Nambu [2] proposed that the physical vacuum
undergoes spontaneous symmetry breaking. In this way, the current picture of

1Dirac interpreted proton as the antiparticle of electron [1]. After the experimental discovery in
1932, the antiparticle of electron has been identified as positron.
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physical vacuum has become closer to an ordered ground state in condensed matter;
the vacuum is full of structures.

One cannot observe the ground state by experiment, but only excitations out of
it. Hence if the ground state of a many-particle system is connected continuously
from the non-interacting counterpart, the Landau picture of quasi-particles, or minor
modification thereof, will apply. However, if the ground state with interactions is
separated from the non-interacting state, the observable excitations are also different
from the Landau quasi-particles. The most striking example of the ground state
distinct from the non-interacting counterpart has been found in two-dimensional
electrons in strong magnetic fields [3]. From the magnitude of the Hall effect
in GaAs-GaxAl1−xAs heterostructures, it has been deduced that the particles
responsible for the transport are fractionally charged. Hence the experimental
result has been called the fractional quantum Hall effect (FQHE). Shortly after the
observation of FQHE, convincing interpretation was offered by Laughlin [4], who
proposed a trial wave function for the ground state of the system.

Before discussing the non-perturbative interaction effects, it is necessary to be
acquainted with some elements in quantum mechanics for a charged particle without
spin. The first one is the Aharonov–Bohm (AB) effect [5] which shows that the
vector potential influences the observables even though there is no magnetic field.
Let us consider the simplest case illustrated in Fig. 8.1 where the conducting ring
in the xy-plane is threaded by a magnetic flux φAB along the z-axis. The flux is
infinitesimally thin so that there is no magnetic field except at x = y = 0 in the
plane:

B(r) = φABδ(r), (8.1)

where r = (x, y). The corresponding vector potential A(r) is given by

A = φAB

2πr2
ẑ × r, (8.2)

with the use of the unit vector ẑ along the z-axis. In terms of the polar coordinate
(r, θ), the components are written as

Ar = 0, Aθ = φAB

2πr
. (8.3)

Fig. 8.1 System of
conducting ring on the
xy-plane with a thin magnetic
flux along the z-direction
threading the plane
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The Hamiltonian of an electron confined in the ring with radius R is given by

H = 1

2m
(pθ + eAθ )

2 , (8.4)

with pθ = (iR)−1∂/∂θ . In the case of φAB = 0, eigenfunctions are of the form
ψk(θ) = exp(ikθ) with k integers. Accordingly the eigenvalues are given by Ek =
k2/(2mR2). There are two-fold degeneracies with ±k, except for the ground state
k = 0. For nonzero φAB, we introduce the ratio α = φAB/φ1 where φ1 = 2π/e is
the unit flux. Note that the flux quantum φ0 is defined by φ0 ≡ h/(2e) = φ1/2 with
the Planck constant h = 2πh̄ recovered. The factor 1/2 comes from the charge 2e
of a Cooper pair. With the gauge transformation

ψAB(θ) = exp (−iαθ)ψk(θ), (8.5)

we obtain

eiαθ (pθ + eAθ )
2 ψAB(θ) = p2

θψk(θ) = (k/R)2ψk(θ). (8.6)

Thus the vector potential Aθ has been absorbed in the phase factor. It may then
appear that the magnetic flux does not play any role. However, we have to recall that
physical wave functions must be single-valued. Thus the new periodicity condition
for θ requires n ≡ k − α be an integer, which leads to the spectrum

En = 1

2mR2 (n + α)2 , (8.7)

with integer n. Namely, the ground state energy does depend on φAB, and oscillates
between 0 and 1/(2mR2) with the period Δα = 1.

The origin of observable effect by the vector potential, which has been
gauged away, is its singularity at r = 0. Accordingly such gauge transformation
exp [iαθ(r)] for general coordinate r is ill-defined at r = 0, and is called the
singular gauge transformation. As a consequence, the phase factor in Eq. (8.5)
does not have the periodicity 2π for θ with non-integer α. We emphasize that the
spatial singularity matters even if the wave function vanishes there. In contrast, the
spectrum remains invariant against the ordinary gauge transformation, which is well
defined at all spatial positions. Let us confirm the invariance by employing a new
vector potential:

A → A + ∇χ (8.8)

with χ(r) being a real and regular function of r . We make the Fourier decomposition
in the angular coordinate:

χ(R, θ) =
∞∑

n=−∞
χn(R) exp(inθ), (8.9)
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with χ−n = χ∗
n . Then we recognize that the new phase factor exp(−ieRχ)

multiplying ψAB in Eq. (8.5) has the proper periodicity 2π in θ , and absorbs the
change of the vector potential without any physical effect.

The second element in one-body quantum mechanics is called the Berry (or
geometric) phase [6, 7], which generalizes the AB phase associated with the vector
potential. In general, nonzero phase may appear as a result of infinitely slow
(adiabatic) change of a system parameter that takes a loop trajectory in real or
hypothetical space. Specifically we consider a variant of the system in Fig. 8.1,
removing the confining potential along the ring but adding a smooth potential well
with the minimum at ρ. Let ψ(r −ρ) be the (real) wave function of the groundstate
with φAB = 0. We assume that ρ is initially at ρ = (R, 0), and moves slowly along
the ring where the spread of ψ(r − ρ) is much smaller than R. With φAB 	= 0, the
eigenfunction ψρ(r) is given by

ψρ(r) = exp

[
ie

∫ r

ρ

dr ′ · A
(
r ′)
]
ψ(r − ρ), (8.10)

with the use of the gauge transformation. The integration path of r ′ through [ρ, r]
does not make a loop around the flux so that ψρ(r) be single-valued.

Let us derive the phase factor acquired by ψρ(r) after the loop-wise move of ρ. It
is obvious that an infinitesimal move of ρ leads to the additional phase δθ in ψρ(r)

as given by

δθ = −eδρ · A(ρ). (8.11)

Hence we obtain the net change Δθ of the phase as

Δθ = e

∮
dρ · A(ρ) = ±2πα, (8.12)

where ± depends on the direction of rotation. The result is the same as in Eq. (8.5),
except that the groundstate energy is now independent of α. On the other hand, if
the loop-wise move of ρ does not include the origin r = 0, there is no phase factor
acquired. The extra phase depends only on whether the path includes the origin, and
is independent of the details. Furthermore, the phase is independent of the potential
that makes ψ(r − ρ) the groundstate. In this sense the extra phase characterizes the
topology of the surface S.

Accumulation of the phase factor along the loop integral may happen under more
general conditions. Let |ψλ〉 be the groundstate of some Hamiltonian with λ being
a slowly varying vector which generalizes the position ρ. The infinitesimal change
δθ of the phase of |ψλ〉 is given by

δθ = −Im ln〈ψλ|ψλ+δλ〉 = −Im

〈
ψλ| ∂

∂λ
ψλ

〉
· δλ ≡ AB(λ) · δλ, (8.13)
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which defines the fictitious vector (Berry) potential AB(λ). We have here used the
property δ〈ψλ|ψλ〉 = 0 by the normalization of ψλ. The net change of θ after the
move of λ along the loop C is given by the Stokes theorem as

Δθ =
∮

C

AB(λ) · dλ =
∫

S

∇ × AB · dS, (8.14)

where the surface S is enclosed by the loop C, and ∇×AB is the fictitious magnetic
field. Note that Δθ is independent of the gauge transformation of AB as in Eq. (8.8).
In a general case of n-dimensional parameter λi , the terminology of differential
geometry [8] is properly used: each component ABi of the n-dimensional Berry
potential is called the connection along the direction i, and the surface (S) integral
in Eq. (8.14) involves Ωij ≡ ∂iABj − ∂jABi which is called the Berry curvature.
It has thus become clear that the Berry phase is a proper generalization of the AB
phase. We discuss in the next section how the Berry phase is utilized in fractional
statistics of quasi-particles. The Berry phase appears in a variety of phenomena in
condensed matter [7].

As the third and final element in quantum mechanics, we survey the one-electron
problem in magnetic field B = (0, 0, B). Neglecting the spin degrees of freedom
for simplicity, the Hamiltonian of an electron confined in the two-dimensional plane
is given by

H = 1

2m

(
π2
x + π2

y

)
, (8.15)

where (πx, πy) = π = p + eA. Taking the vector potential in the symmetric gauge
such as A = B × r/2, we obtain the coordinate representation:

πx = −i
∂

∂x
+ 1

2�2
B

y, πy = −i
∂

∂y
− 1

2�2
B

x, (8.16)

where �B = √
ch̄/eB is called the cyclotron radius, with h̄ and the light velocity c

written explicitly. We obtain the estimate � ∼ 81 Å for B ∼ 10 T.
It is convenient to introduce the operators

a ≡ �B√
2

(
πx + iπy

)
, a† ≡ �B√

2

(
πx − iπy

)
, (8.17)

which satisfy the bosonic commutation rule: [a, a†] = 1. Then the Hamiltonian is
rewritten as

Ĥ =
(
a†a + 1

2

)
h̄ωc (8.18)
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with

ωc = h̄

m�2
B

= eB

mc
. (8.19)

The magnitude of h̄ωc is about 1 meV with B ∼ 10 T. Since a†a is a non-negative
operator, the groundstate energy is given by h̄ωc/2. Hereafter we put h̄ = c = 1
again.

We next introduce the dimensionless complex coordinates z and z∗ by

z = 1

2�B
(x + iy), z∗ = 1

2�B
(x − iy), (8.20)

which give the derivatives as

∂

∂z
= �B

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z∗ = �B

(
∂

∂x
+ i

∂

∂y

)
. (8.21)

Then we obtain useful representations:

a = − i√
2

(
z + ∂

∂z∗

)
= − i√

2
e−|z|2 ∂

∂z∗ e
|z|2, (8.22)

a† = i√
2

(
z∗ − ∂

∂z

)
= − i√

2
e|z|2 ∂

∂z
e−|z|2 . (8.23)

From Eq. (8.22) we recognize that wave functions of the form

φ(z) = f (z) exp
(
−|z|2

)
, (8.24)

with f (z) being any polynomial of z, give the groundstate energy ωc/2, since it is
annihilated by a, namely

a†a|φ〉 = 0. (8.25)

Thus we choose the unnormalized set of wave functions for the degenerate ground
state as

φm(z) = zm exp
(
−|z|2

)
, (8.26)

with m being non-negative integers.
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The functions φm form a complete set for the ground Landau level. The
degeneracy nB per unit area increases with increasing B, which we now derive.
The maximum of |φm(z)|2 corresponds to |z|2 = m/2, and the width of the charge
distribution decreases as 1/

√
m. Thus with m � 1 the charge density takes the

circular shape with the diameter Rm given by

R2
m = 2�2

Bm. (8.27)

Namely, the system with diameter RN can accommodate N + 1 states from m = 0
to N . Thus the degeneracy per unit area is given by

nB = N + 1

πR2
N

= 1

2π�2
B

+ O

(
1

N

)
. (8.28)

We shall give another derivation later.

8.2 Fractional Charge in Two Dimensions

With these preliminaries of quantum mechanics in the previous section, we can now
proceed to many-electron systems. We begin with N non-interacting electrons in
strong magnetic field. The ground state with the most compact charge distribution
is given by the Slater determinant:

Ψ1(z1, z2, . . . , zN) = det

∣∣∣∣∣∣∣∣

φ0(z1) φ0(z2) · · ·φ0(zN)

φ1(z1) φ1(z2) · · ·φ1(zN)

· · · · · · · · ·
φN−1(z1) φN−1(z2) · · ·φN−1(zN)

∣∣∣∣∣∣∣∣
, (8.29)

which is equivalent to

Ψ1 =
∏

1≤i<j≤N

(zi − zj )

N∏

i=1

exp
(
−|zi |2

)
. (8.30)

It is obvious that Ψ1(z1, z2, . . . , zN) is antisymmetric against interchange of any two
coordinates. Thus Ψ1 satisfies the basic property for fermions. In the thermodynamic
limit N → ∞, Ψ1(z1, z2, . . . , zN) gives the fully occupied Landau level with the
electron density n = nB .

Now we can turn to our primary interest: the system of N interacting electrons.
Experimentally, the Coulomb repulsion among electrons is the most relevant
interaction. However, we do not use the explicit form, and simply assume that the
relevant energy scale due to the interaction is much smaller than ωc. For FQHE
systems, Laughlin has constructed a simple but highly nontrivial trial wave function
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that takes advantage of repulsive interaction between electrons. The trial function
reads

Ψq(z1, z2, . . . , zN) =
∏

i<j

(zi − zj )
q

N∏

i=1

exp
(
−|zi |2

)
, (8.31)

with q being odd integer. Evidently Ψq satisfies the antisymmetric property for
fermions. As compared with Ψ1 with the same N , electrons in Ψq with q ≥ 3
are more separate from one another.

There are a variety of ways to see that Ψq describes a state with 1/q occupation
of the ground Landau level in the thermodynamic limit. We shall use the analogy to
classical plasma [4], which also demonstrates the fractional charge most transpar-
ently. The analogy begins with the norm in the form:

〈Ψq |Ψq〉 ≡
∫

dz1dz2 · · · dzN exp(−βHc), (8.32)

1

2
βHc(z1, z2, . . . , zN) =

∑

i

|zi |2 − q
∑

i<j

ln
∣∣zi − zj

∣∣ . (8.33)

The quantity Hc corresponds to the Hamiltonian of the two-dimensional classical
plasma at fictitious temperature T = 1/β. In the thermodynamic limit, only such
configuration that gives the minimum of βHc needs to be considered. The Coulomb
potential between two-dimensional particles with unit charge Q is given by

V2(zi − zj ) = −Q2

2π
ln |zi − zj |, (8.34)

the derivation of which is discussed in Problem 8.1. Since V2(zi − zj ) has the
dimension of energy, the dimension of Q is different from that of ordinary charge
in three-dimensional systems. On the other hand, the neutralizing background with
the charge density −Qρ gives the harmonic potential as given by

V1(zi) = Q2�2
Bρ|zi |2. (8.35)

Problem 8.1 also discusses how this potential comes out. The classical plasma
must be homogeneous in the thermodynamic limit. Otherwise the lack of charge
neutrality causes the logarithmically divergent potential to break up the system.
Comparison of V1 and V2 with Eq. (8.33) gives the correspondence

2q

β
= Q2

2π
,

2

β
= Q2�2

Bρ. (8.36)
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With the charge neutrality, which is necessary for the minimum energy, the electron
density is the same as ρ as given by

ρ = 1

2π�2
Bq

= nB

q
≡ νnB. (8.37)

Thus Ψq indeed corresponds to the occupation ν = 1/q of the ground Landau level.
The special case q = 1 reproduces the degeneracy given by Eq. (8.28).

We proceed to discuss the fractional charge by modifying Hc as

β

2
Hch ≡ β

2
Hc −

N∑

i=1

ln |zi − w|, (8.38)

which corresponds to inserting an external charge at w into the plasma. The
magnitude of the charge must be Q/q since the mutual interaction term in Hc has
the coefficient q. The Hamiltonian Hch is realized by the wave function:

Ψqh(z1, z2, . . . , zN ;w) =
N∏

i=1

(zi − w)Ψq(z1, z2, . . . , zN). (8.39)

Thus Ψqh describes an excited state with a fractionally charged (= e/q) entity at
w, which is called the quasi-hole. In the special case w = 0, it is obvious that
Ψqh is expanded a little more than Ψq due to the increase by N of the total angular
momentum. Thus the overall density is less than that of Ψq by O(1/N).

Similarly, we can modify Hc in another way as

β

2
Hcp ≡ β

2
Hc +

N∑

i=1

ln |zi − w|, (8.40)

which amounts to inserting an external fractional (1/q) charge with the sign opposite
from that of N particles. In the special case w = 0, the associated factor

exp

(
−
∑

i

ln zi

)
=
∏

i

z−1
i (8.41)

is reflected in the corresponding wave function Ψqp as reduction of the power of each
zi in the polynomial part of Ψq . However, any negative power should not appear in
the final result. Thus the reduction is accomplished by ∂/∂zi rather than by 1/zi .
Namely, we obtain

Ψqp(z1, z2, . . . , zN ;w = 0) = exp

(
−

N∑

i=1

|zi |2
)

N∏

k=1

∂

∂zk

∏

i<j

(
zi − zj

)q
.

(8.42)
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Since the derivatives decrease the total angular momentum by N from that of Ψq ,
the overall density of electrons increases by O(1/N). The change is ascribed to the
fractionally charged quasi-electron at the origin w = 0. In a similar manner, the
case with w 	= 0 can be treated with a little more complication [4].

The plasma analogy makes it clear how the charge of a quasi-particle acquires
a fractional magnitude. We now ask how the quasi-particle affects the phase of the
wave function. It is convenient to consider the case with two quasi-particles. We
derive the change of the phase of wave function after one of them encircles the other.
The resultant change corresponds to the Berry phase, and the half of the change,
which corresponds to the interchange of quasi-particles, describes their statistics.
Namely, they are regarded as bosons if there is no change, and as fermions if the
sign reverses. It is convenient to allow for different species of quasi-particles with
the wave function:

Ψqhp(z1, z2, . . . , zN ;w, v) ≡
N∏

i=1

(zi − w)(zi − v)pΨq(z1, z2, . . . , zN) (8.43)

with p being an integer. If we set p = 1, Ψqh1 describes a state with two identical
holes present, and Ψqhq with p = q describes another state with a hole at v and an
extra electron present at v. Although Ψqh1 is symmetric against interchange of w and
v, this does not mean their bosonic property since w and v are just parameters in the
N -electron system. On the other hand, the Berry phase as a result of adiabatic move
w and/or v reflects the property of quasi-particles in the system with N electrons.

We shall inspect evolution of the phase of Ψqhp as w encircles adiabatically
around the origin with radius R (� �B) [9]. Let us consider the two cases: (1)
|v| � R, and (2) |v| � R with resulting phase changes θ1 and θ2. We regard
Δθ = θ1 − θ2 as the Berry phase of the hole in the presence of another object
at v. Thus Δθ/2 corresponds to the interchange of two objects at w and v. The
manipulation of closed loop encircling or avoiding the other object is in line with
derivation of the Berry phase in Sect. 8.1. In the present case, however, it is essential
that we integrate over the position zi of a large number of electrons.

In the case (1), the factor (zi − v)p ∼ (−v)p influences only normalization, and
we may take Ψqh in Eq. (8.39) in considering the variation of w = Reiφ . Since the
norm 〈Ψqh|Ψqh〉 does not change by δφ, we may use the unnormalized form for
variation. Thus according to Eq. (8.13) we need to evaluate

δθ1 = −1

〈Ψqh|Ψqh〉 Im〈Ψqh|δΨqh〉. (8.44)

Using the relation

δ lnΨqh =
∑

i

δ ln(zi − w), (8.45)
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we obtain

δθ1 = − 1

〈Ψqh|Ψqh〉
∫

dz1, . . . , dzN |Ψqh|2Im δ
∑

i

ln(zi − w)

= −
∫

dzρ(z)Im δ ln(z − w), (8.46)

where we have used the electron density:

ρ(z) =
∫

dz1, . . . , dzN
|Ψqh|2

〈Ψqh|Ψqh〉
∑

i

δ(z − zi). (8.47)

As w encircles the contour with radius R, only the region |z| < R contributes to∮
dwIm ln(z − w) 	= 0. In this region we have ρ(z) = ρ0 = ν/(2π�2

B) in the
thermodynamic limit N → ∞. We thus obtain the simple result

θ1 = ρ0

∫

|z|≤R

dz
∫ 2π

0
d(argw) = 2πNR (8.48)

with NR = ρ0πR
2 = ν(R/�B)

2.
In the case (2), we use Ψqhp with v = 0 for evaluation of θ2. By similar reasoning

to the case of (1) we obtain

δθ2 = −
∫

dzρp(z)Im δ ln(z − w), (8.49)

ρp(z) =
∫

dz1, . . . , dzN
|Ψqhp|2

〈Ψqhp|Ψqhp〉
∑

i

δ(z − zi). (8.50)

The density ρp(z) includes a deficit region due to the factor
∏

i (zi − v)p in Ψqhp.
As a result the integration gives

∫

|z|≤R

dzρp(z) = NR − p

q
= NR − pν. (8.51)

The case p = q gives NR − 1 in the RHS, which is understood naturally, since
the object at v has the same role as electrons but is not counted as such. In another
case p = 1 the deficit of the density is less than the case p = q (≥3), and gives
the fractional statistics. In fact, the phase that amounts to exchange of two identical
holes is given by

1

2
(θ1 − θ2) = πν. (8.52)
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Actually, the sign reverses depending on the direction of rotation in the exchange.
The complete filling with ν = 1 recovers the Fermi statistics. Otherwise, the
statistics is neither Fermi nor Bose, but fractional.

We may consider the move of v, instead of w, along the circle with radius R.
Correspondingly we derive the phase θ3 for the case |w| � R, and another phase θ4
where |w| � R. Following the procedure parallel to the previous cases (1) and (2),
we obtain

θ3 = −
∫

dzρ(z)Im ln(z − v)p = 2πpNR, (8.53)

θ4 = −
∫

dzρ1(z)Im ln(z − v)p = 2πp

(
NR − 1

q

)
, (8.54)

where the electron density ρ1(z) includes a deficit region due to the factor
∏

i (zi −
w) in Ψ . Thus we obtain with p = 1

1

2
(θ3 − θ4) = πp/q = πν, (8.55)

which is the same as the result in Eq. (8.52). The equivalence persists even if p 	= 1.
Since the exchange of two objects gives identical results whether w or v makes
a move, the exchange statistics is well defined. In the special case of p = 1, the
fractional statistics of quasi-holes is characterized by ν = 1/q.

As presented above, the wave functions constructed by Laughlin have convinc-
ingly demonstrated the emergence of fractional charge and exotic statistics. In
this scheme, however, it is difficult to analyze effects of finite temperature, and
dynamical property of the system exhibiting the FQHE. We shall thus turn to a
one-dimensional system where fractional particles also emerge. The great advantage
of the one-dimensional system is that exact analytic solution is available not only
for thermodynamics but also for dynamics [10]. We shall see that the mechanism
for the fractional charge shares something in common with the FQHE system, but
there are also different aspects. Especially there is no symmetry between quasi-holes
and quasi-electrons in the one-dimensional system as described in detail below.
Comparison of both systems will give deeper insight into such non-perturbative
effects as charge fractionalization.

8.3 Sutherland Model and Its Exact Eigenvalues

In the rest of this chapter we consider mostly a one-dimensional system of spinless
N particles. We take the Hamiltonian:

H = −
N∑

i=1

∂2

∂x2
i

+ π2

L2

∑

i 	=j

λ(λ − 1)

sin2 [π
(
xi − xj

)
/L
] , (8.56)
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where xi is the coordinate of i-th particle, and L is the length of the system with the
periodic boundary condition. The denominator in the interaction term corresponds
to the chord distance squared for a ring with circumference L, and behaves as r2

for the interparticle distance r = |xi − xj | with r/L � 1. The coupling parameter
λ is taken to be a positive integer for simplicity. We have taken units such that all
variables are dimensionless. This model is known as the Sutherland model [11],
which realizes fractionally charged quasi-particles in its exact solution. The model
may appear very special because of its interaction form. In fact, the Sutherland
model corresponds to the fixed point model in the sense of renormalization toward
a non-Fermi liquid ground state. In other words, the model includes the Tomonaga–
Luttinger liquid for density excitations in the limit of long wavelength.

We take the following form of N -particle wave function:

Ψg(x1, x2, . . . , xN) =
∏

j<k

sinλ
π
(
xj − xk

)

L
, (8.57)

which turns out to describe the ground state of Eq. (8.56). With an odd number for
λ, the wave function is antisymmetric against exchange of two coordinates, which
corresponds to the property of fermions. In the particular case of λ = 1, Ψg reduces
to the Slater determinant for free fermions, which is consistent with the vanishing
interaction λ(λ−1) = 0 in Eq. (8.56). The reduction to the Slater determinant is the
subject of Problem 8.2. On the other hand, with an even integer for λ, the exchange
of two coordinates in Ψg(x1, x2, . . . , xN) leaves the wave function invariant, which
corresponds to the property of bosons.

We now demonstrate that Eq. (8.57) describes the ground state of Eq. (8.56) for
any positive value of λ. The argument is actually not restricted to the case of integer
λ, provided the power of the sine function is well-defined. We first take the derivative
of Ψg to obtain

∂

∂xj
Ψg =

∑

i( 	=j)

λπ

L
cot

π(xj − xi)

L
Ψg. (8.58)

Further derivative Ψg leads to the result

(
L

π

)2

Ψ−1
g

N∑

i=1

∂2

∂x2
i

Ψg = λ2
N∑

i=1

⎡

⎣
∑

j ( 	=i)

cot
π(xi − xj )

L

⎤

⎦
2

− λ
∑

i 	=j

sin−2 π
(
xi − xj

)

L
, (8.59)
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where the first summand in the RHS is separated into the two-site contribution

∑

i 	=j

cot2
π
(
xi − xj

)

L
=
∑

i 	=j

sin−2 π
(
xi − xj

)

L
− N(N − 1), (8.60)

and the three-site one

∑

i

∑

j ( 	=i)

∑

k( 	=i,j)

cot
π
(
xi − xj

)

L
cot

π (xi − xk)

L
. (8.61)

Surprisingly, Eq. (8.61) gives a constant N(N − 1)(N − 2)/3 independent of the
coordinates! This fact results from the identity

cot(ij) cot(ik) + cot(j i) cot(jk) + cot(ki) cot(kj) = −1, (8.62)

with the abbreviated notation: cot(ij) ≡ cot
[
π
(
xi − xj

)
/L
]
. The proof of this

identity is the subject of Problem 8.3. Consequently, the RHS of Eq. (8.59) is given
by

(π
L

)2 ∑

i 	=j

λ(λ − 1)

sin2 [π
(
xi − xj

)
/L
] − E0,N , (8.63)

where the first term corresponds to the interaction term in H given by Eq. (8.56),
while the constant

E0,N = (πλ/L)2 N(N2 − 1)/3 (8.64)

gives the eigenenergy associated with Ψg. Thus by arranging terms in Eq. (8.59)
we obtain HΨg = E0,NΨg. We shall show later that E0,N is indeed the lowest
eigenvalue of H .

In addition to the ground state energy, we can derive all eigenenergies of the
Sutherland model without much effort. For this purpose we take any eigenfunction
Ψ in the form Ψ = ΨgΦ. Then we consider a new Schrödinger equation
for Φ(x1, . . . , xN) with the condition that Φ(x1, . . . , xN) be invariant against
interchange of coordinates. For an odd integer λ, this construction makes Ψ

antisymmetric against coordinate exchange, as an inheritance from Ψg. Thus Ψ

is capable of describing identical fermions. From the original eigenvalue equation
HΨgΦ = EΨgΦ, we obtain a new equation for Φ as

⎛

⎝−
∑

i

∂2

∂x2
i

+
∑

i 	=j

2πλ

L
cot

π(xi − xj )

L

∂

∂xi

⎞

⎠Φ = (
E − E0,N

)
Φ. (8.65)
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In the following we make extensive use of the complex coordinate zj =
exp(2π ixj /L), which leads to the following expressions:

∂

∂xj
= 2π izj

L

∂

∂zj
, cot

π(xl − xj )

L
= i

zl + zj

zl − zj
. (8.66)

In the solution of Problem 8.2, Eq. (8.128) utilizes the complex coordinates. The
Hamiltonian can also be represented in terms of zj . Namely, Eq. (8.65) can be
written as

(
h(1) + λh(2)

)
Φ = EΦ, (8.67)

with E = [L/(2π)]2
(
E − E0,N

)
and

h(1) =
∑

i

(
zi

∂

∂zi

)2

, h(2) =
∑

i<j

(
zi + zj

zi − zj

)(
zi

∂

∂zi
− zj

∂

∂zj

)
. (8.68)

Note that h(1,2) are not Hermitian, but h = h(1)+λh(2) have real eigenvalues because
the original Hamiltonian is Hermitian. The transformation H → h = Ψ−1

g HΨg is
an example of similarity transformations which are not necessarily unitary, but keep
the eigenvalues of H .

Let us proceed to derive all eigenenergies. We begin with the two-body (N =
2) problem in order to understand the strategy which is valid for any value of N .
Consider the symmetrized function Φ(z1, z2) = z

κ1
1 z

κ2
2 + z

κ2
1 z

κ1
2 . By operating h(1)

upon Φ we immediately obtain the eigenvalue κ2
1 + κ2

2 . We next operate h(2) upon
Φ. The result is 0 in the case of κ1 = κ2, while in the case of κ1 > κ2, we obtain the
following result:

(
z1 + z2

z1 − z2

)(
z1

∂

∂z1
− z2

∂

∂z2

) (
z
κ1
1 z

κ2
2 + z

κ2
1 z

κ1
2

)

= (κ1 − κ2)

(
z1 + z2

z1 − z2

) (
z
κ1
1 z

κ2
2 − z

κ2
1 z

κ1
2

)

= (κ1 − κ2) (z1 + z2)
(
z
κ1−1
1 z

κ2
2 + · · · + z

κ2
1 z

κ1−1
2

)

= (κ1 − κ2)
(
z
κ1
1 z

κ2
2 + 2zκ1−1

1 z
κ2+1
2 + · · · + 2zκ2+1

1 z
κ1−1
2 + z

κ2
1 z

κ1
2

)
.

(8.69)

It is clear from Eq. (8.69) that application of h keeps the degree κ = κ1 + κ2 of
homogeneous polynomials in z1 and z2. Then the set of homogeneous polynomials
is arranged into the decreasing order of the maximum power of z1. Namely, we
obtain Φ1 = zκ1 + zκ2 , Φ2 = zκ−1

1 z2 + z1z
κ−1
2 , . . . and so on. Here we do not
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care about normalization of Φi . With this definition of the basis set, the result
(h(1) + λh(2))Φi is expressed as a linear combination of Φj with j ≥ i. This means
that the Hamiltonian matrix with this ordered basis has a triangular form with zero
components in the lower triangular part. Since the eigenvalues of a triangular matrix
are exhausted by its diagonal elements, we obtain

E(κ1, κ2) = κ2
1 + κ2

2 + λ|κ1 − κ2| (8.70)

for the two-body eigenvalues. Here the condition κ1 ≥ κ2 is no longer necessary
because of the absolute value.

For the N -body wave function Φ(z1, z2, . . . , zN) with the total momentum κ ,
we take the same ordering of the homogeneous polynomials. Namely, in the set
(κ1, κ2, . . . , κN) with κ = ∑

i κi , the first priority is a larger value of κ1. If this is
the same in the two polynomials, the second priority is a larger value of κ2, and so
on. In this way the set of basis functions are generated. For example, we obtain

Φ1 =
∑

i

zκi , Φ2 =
∑

i 	=j

zκ−1
i zj ,

Φ3 =
∑

i 	=j

zκ−2
i z2

j , Φ4 =
∑

i 	=j 	=k 	=i

zκ−2
i zj zk. (8.71)

Note that h(2) acts on a pair of coordinates, say zi, zj . Then application on Φl results
in the diagonal element |κi −κj | and a linear combination of Φm with m > l. Hence
the Hamiltonian is upper triangular, and the eigenvalues are given by its diagonal
elements, just as in the case of N = 2. Thus Eq. (8.70) is generalized as

E(κ1, . . . , κN) =
N∑

i=1

κ2
i + λ

2

N∑

i,j=1

∣∣κi − κj
∣∣ . (8.72)

In this way we have obtained all eigenenergies of the N -particle system. The
ground state energy is given by E(0, 0, . . . , 0) = 0 which corresponds to Eq. (8.64).
The interaction effect enters only in the diagonal element in Eq. (8.72), which
may look like the mean field theory. Nevertheless, the present result is exact. It
is remarkable that a many-body problem can be solved exactly in such a simple
manner. The eigenfunctions can also be derived exactly with a little more effort. We
have already derived the ground state in Eq. (8.57) which corresponds to Φ = 1. It
is known that the excited states with nontrivial Φ are derived in the form called the
Jack polynomials [10].
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8.4 Rapidity of Quasi-Particles

We shall show in this section that the λ-dependent interaction term in Eq. (8.72) is
absorbed into the new quantity called the rapidity, which in the present case refers to
a modification of the momentum. Explicit construction of the rapidity is the subject
of Problem 8.4. Namely, in terms of the rapidity, all eigenvalues are expressed as
the sum of free quasi-particle energies. To proceed we first utilize the following
relation:

∑

i<j

(κi − κj ) =
N∑

i=1

(N + 1 − 2i) κi, (8.73)

the proof of which is also the subject of Problem 8.4. Then Eq. (8.72) is rewritten as

E =
N∑

i=1

[
κ2
i + λ(N + 1 − 2i)κi

]
=

N∑

i=1

(
κ̃2
i − κ̃2

i,0

)
, (8.74)

where we have introduced the rapidity κ̃i by

κ̃i = κi + λ

2
(N + 1 − 2i) , κ̃i,0 = λ

2
(N + 1 − 2i) , (8.75)

with κ̃i,0 relevant to the ground state. It is remarkable that Eq. (8.74) has the form
of difference between κ̃2

i and κ̃2
i,0 both of which represent energies of free particles.

The ground state has E = 0 which corresponds to κ̃i = κ̃i,0, or equivalently κi = 0
for all i. In the special case with λ = 1, the rapidity κ̃i is the same as that of free
fermions.

Alternative representation of the rapidity is given by

κ̃i = κi + λ

2

∑

j ( 	=i)

sgn
(
κ̃i − κ̃j

)
, (8.76)

because of the relation

∑

j ( 	=i)

sgn
(
κ̃i − κ̃j

) =
i−1∑

j=1

(−1) +
N∑

j=i+1

(+1) = N − 2i + 1. (8.77)

The form of Eq. (8.76) will be used conveniently in Sect. 8.6.
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The quantity pi ≡ 2πκ̃i/L has the dimension of momentum, and is also called
the rapidity. The main motivation to introduce pi is to use it as a continuous variable
in the thermodynamic limit L → ∞. Then the total energy E as defined by E −
E0,N = (2π/L)2E is given for a general value of λ by

E =
N∑

i=1

(2πκ̃i/L)
2 ≡

N∑

i=1

p2
i . (8.78)

Thus the rapidity pi (or κ̃i) has the meaning of renormalized momentum including
the interaction effect. Problem 8.4 deals with derivation of Eq. (8.78).

Figure 8.2 illustrates the distribution of κ̃i in the case of λ = 2 and N = 5.
The ground state is shown in (a) with κ̃1 = 4, κ̃2 = 2, . . . , κ̃5 = −4. Thus the
quasi-particles with λ = 2 have an exclusion property stronger than that of free
fermions (λ = 1) where the rapidity takes successive integers. On the other hand,
in an excited state shown in (b), κ̃1 has increased to 6 from 4. We regard this as a
particle excitation, where κ̃1 can take any integer larger than 4. In another excited
state shown in (c), both κ̃1 and κ̃2 have increased by 1 from the ground state. As a
result, the difference κ̃2 − κ̃3 = 3 is larger than the minimum difference 2, which
is the case for all the other momenta. Such state is called a hole. More generally, a
hole is present at κ̃i if all κ̃j ’s with j < i have increased by 1.

(a)

(b)

(c)
hole

particle

Fig. 8.2 Distributions of κ̃i for N = 5, λ = 2. Filled circles represent occupied states, while the
vacant ones are empty states. The center corresponds to the value κ̃i = 0. (a) the ground state; (b)
a particle excitation with the rapidity κ̃ = 6; (c) a hole excitation whose location is between κ̃2
and κ̃3
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8.5 Distribution Function and Entropy

In terms of the distribution function ν(κ) for the momentum κ , the excitation energy
of Eq. (8.72) is written as

ΔE[ν] =
(

2π

L

)2
[
∑

κ

κ2ν(κ) + λ

2

∑

κ

∑

κ ′

∣∣κ − κ ′∣∣ ν(κ)ν
(
κ ′)
]
. (8.79)

Thermodynamics is derived by combining the entropy of the system. Let G be the
number of one-particle states in a given many-particle system. A block α in the
momentum space contains Gα single-particle states specified by κi , and we assume
1 � Gα � G. The contribution to energy from each block is accounted for by a
representative value κα inside the block. Then the averaged distribution function is
defined by

ν̄α = Nα

Gα

, Nα =
∑

κ∈α
ν(κ). (8.80)

The excitation energy is rewritten as the sum of block contributions as

ΔĒ =
(

2π

L

)2
[
∑

α

κ2
αNα + λ

2

∑

α

∑

α′
|κα − κα′ |NαNα′

]
. (8.81)

With this setting we derive the number of states Wα in each block assuming
bosonic particles. Since identical bosons have no restriction on occupation of κα
inside the block, we obtain

Wα = (Gα + Nα − 1)!
(Gα − 1)!Nα! . (8.82)

The entropy S of the whole system is the sum of block contributions. Using the
Stirling formula lnM! ∼ M lnM for a large number M , we obtain the standard
formula for bosons:

S =
∑

α

[(ν̄α + 1) ln (ν̄α + 1) − ν̄α ln ν̄α]Gα, (8.83)

which will be extended later to general statistics. Combining with the internal energy
given by Eq. (8.81) we can derive the free energy F = E − T S. It turns out that the
thermodynamic potential Ω = E − T S − μN is more convenient for applying the
variational (stationary) condition to determine ν(κ).
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In the thermodynamic limit N → ∞, the block quantities such as 2πκα/L →
k, 2πGα/L → dk, ν̄α → ν(k) are regarded as continuous variables. Then the
thermodynamic potential is given by

Ω[ν(k)]/L − π2λ2n3/3

= 1

2π

∫ ∞

−∞
dk (k2 − μ)ν(k) + λ

4π

∫ ∞

−∞
dk
∫ ∞

−∞
dk′ |k − k′|ν(k)ν(k′)

− T

2π

∫ ∞

−∞
dk [(ν(k) + 1) ln (ν(k) + 1) − ν(k) ln ν(k)] , (8.84)

where the second term in the LHS is the contribution from the ground state. The
density n is given by

n =
∫

dk

2π
ν(k).

The equilibrium distribution function ν(k) is determined by the stationary condition
for Ω , which requires δΩ/δν(k) = 0. The solution is given by

ν(k) = {
exp

[
(ε̃(k) − μ) /T

]− 1
}−1

, (8.85)

ε̃(k) = k2 + λ

∫ ∞

−∞
dk′|k − k′| ν (k′) . (8.86)

Equation (8.85) takes the form of the Bose distribution. However, the energy ε̃(k)

includes the interaction effect, and is determined self-consistently by Eq. (8.86).
Hence we regard ε̃(k) as an effective one-particle energy analogous to the quasi-
particle energy in the Fermi liquid theory. We emphasize that the present scheme
is exact for all energies, which is in contrast with the Fermi liquid theory. In this
way, thermodynamic quantities can in principle be derived. Actually, the treatment
is much more simplified with the idea of exclusion statistics which is explained in
the next section.

8.6 Exclusion Statistics

We have indexed the neighboring momenta as κi ≥ κi+1. As a result the rapidities
κ̃i are constrained as

κ̃i − κ̃i+1 = κi − κi+1 + λ ≥ λ. (8.87)

This restriction is regarded as a generalization of the Pauli exclusion principle,
and is called the exclusion statistics [12]. We note here the difference from the
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exchange statistics including the fractional one as discussed in Sect. 8.2. In one-
dimensional system, any spatial exchange avoiding the collision is not possible.
Hence the statistics on this basis does not have a meaning, in contrast with higher
dimensions. Hence the distinction including the one between ideal Fermi and Bose
particles is made most naturally in terms of the degree of exclusion.

From now on we use another notation of the rapidity pi = 2πκ̃i/L and the
momentum ki = 2πκi/L, both of which are regarded as continuous variables. Then
Eq. (8.76) is written as

pi = ki + πλ

L

∑

j ( 	=i)

sgn(pi − pj ). (8.88)

We introduce the rapidity distribution function by

ρ(p) = 2π

L

∑

i

δ(p − pi). (8.89)

Then Eq. (8.88) can also be expressed as

pi = ki + λ

2

∫
dp′sgn

(
pi − p′) ρ

(
p′) . (8.90)

Using the relation

ρ(p)dp = ν(k)dk = (2π/L)dN, (8.91)

we take the p-derivative of both sides of Eq. (8.90) to obtain

1 = dk

dp
+ λρ(p) = ρ(p)

ν(k)
+ λρ(p), (8.92)

which is equivalently written as

ρ(p)−1 = ν(k)−1 + λ. (8.93)

By use of Eq. (8.93), ν(k) and ρ(p) are expressed in terms of each other as

ν(k) = ρ(p)

1 − λρ(p)
, ρ(p) = ν(k)

1 + λν(k)
. (8.94)

Making use of the rapidity distribution function, the energy is given in the free-
particle form:

E =
∑

i

p2
i = L

∫
dp

2π
p2ρ(p). (8.95)
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Furthermore the entropy derived in Eq. (8.83) is equivalently written as

S = L

∫ ∞

−∞
dp

2π

[(
ρ + ρ∗) ln

(
ρ + ρ∗)− ρ ln ρ − ρ∗ ln ρ∗] , (8.96)

where the argument p has been omitted in the integrand, and ρ∗ is given by

ρ∗ = 1 − λρ, (8.97)

which has the meaning of the hole distribution function. Derivation of Eq. (8.96),
starting from Eq. (8.83) for bosons, is the subject of Problem 8.5. In the special case
λ = 1, we obtain ρ∗ = 1 − ρ, and the entropy reduces to that of fermions.

It is possible to formulate the exclusion statistics in a way independent of a
particular model. We use G defined as the number of one-particle states in a given
many-particle system. We consider the influence of occupation of certain states on
further occupation of particles. The number of available states is written as D. In the
case of bosons, any occupation does not influence D, so that we have D = G. For
fermions, the available number D under m occupied states is given by D = G − m

according to the Pauli principle. Hence in the N -particle systems, the available
number for the N -th particle is given by

D =
{
G (bosons),
G − N + 1 (fermions).

(8.98)

These relations can be expressed in a unified manner with the use of a statistical
parameter g as

ΔD = −gΔN, (8.99)

where the change ΔD of available states is proportional to the change ΔN of the
particles. The bosons have g = 0, while fermions have g = 1. In the Sutherland
model, the exclusion statistics with g = λ is realized. Here we extend the range of
g to be any non-negative number.

Let us proceed to determine the entropy associated with exclusion statistics. We
consider a block α in the rapidity space which contains many (Gα � 1) rapidities,
but Gα is still much smaller than the number G of the whole system. We have
used similar idea to derive the bosonic entropy working in the momentum space
with the use of ν(κ) as in Eq. (8.80). We now prefer rapidity to momentum and
accordingly use ρ(p). The contribution to energy from each block is accounted
for by a representative value of rapidities inside the block. Then the averaged
distribution function ρα is defined by

ρα = Nα

Gα

, Nα =
∑

p∈α
ρ(p). (8.100)
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We define the hole distribution function ρ∗
α by

ρ∗
α = Dα

Gα

= 1 − gρα, (8.101)

with use of Eq. (8.99). It is consistent with Eq. (8.97) defined from a different route
for g = λ. The number of states Wα in each block is given by

Wα = (Dα + Nα − 1)!
(Dα − 1)!Nα! = exp(Sα), (8.102)

where Sα is the entropy of the block. The entropy S of the whole system is the sum
of block contributions. Using the Stirling formula we obtain the result

S =
∑

α

Gα

[(
ρα + ρ∗

α

)
ln
(
ρα + ρ∗

α

)− ρα ln ρα − ρ∗
α ln ρ∗

α

]
, (8.103)

which is consistent with Eq. (8.96) obtained for a specific model.

8.7 Thermodynamics with Exclusion Statistics

We now derive thermodynamics with exclusion statistics without referring to a
specific Hamiltonian such as the Sutherland model. The thermodynamic potential
Ω of free particles with the statistical parameter g is given by

Ω/L =
∫

dp

2π
(ε − μ)ρ − T

∫ ∞

−∞
dp

2π

[(
ρ + ρ∗) ln

(
ρ + ρ∗)− ρ ln ρ − ρ∗ ln ρ∗] ,

(8.104)

with ρ∗ = 1 − gρ. In the Sutherland model, the corresponding parameters are given
by ε = p2 and g = λ.

The distribution function ρ(p) is determined by the stationary condition
δΩ/δρ(p) = 0, which leads to

ln (1 + w) − g ln
(

1 + w−1
)

= ε − μ

T
, (8.105)

with w ≡ ρ∗/ρ. Equation (8.105) is also written as

exp [(ε − μ) /T ] = wg (1 + w)1−g . (8.106)

The distribution functions are expressed in terms of w and g as

ρ = 1/(w + g), ρ∗ = w/(w + g), (8.107)
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with use of ρ∗ = 1 − gρ. Then Ω is compactly written as

Ω/L = −T

∫
dp

2π
ln
[
1 + w−1

]
. (8.108)

Let us check Eq. (8.108) for some special cases. In the case g = 0, Eq. (8.106)
gives

w = exp [(ε − μ) /T ] − 1, (8.109)

which leads to the bosonic distribution function

ρ = 1

exp [(ε − μ) /T ] − 1
, ρ∗ = 1 (8.110)

and the thermodynamic potential

Ω = T

∫
dp

2π
ln
[
1 − exp[−(ε − μ)/T ]] . (8.111)

In another special case g = 1, we use the relation w = exp [(ε − μ) /T ]. Then
Eq. (8.106) leads to

ρ = 1

exp [(ε − μ) /T ] + 1
, ρ∗ = 1

exp [− (ε − μ) /T ] + 1
, (8.112)

and

Ω = −T

∫
dp

2π
ln
[
1 + exp[−(ε − μ)/T

]
, (8.113)

which obviously describes free fermions.
For other special cases of g = 1/2 and 2, we can derive w as the solution

of the quadratic equation. Moreover, these particular cases exhibit some typical
characteristics of the exclusion statistics. With g = 2, we obtain the solution of
Eq. (8.106) as

w = 1

2
e(ε−μ)/T

[
1 +

√
1 + 4e−(ε−μ)/T

]
≡ 1

2
e(ε−μ)/T (1 + R2) , (8.114)

ρ = 1

2

(
1 − 1

R2

)
, ρ∗ = 1

R2
. (8.115)

Note that the restriction ρ ≤ 1/2 with R2 ≥ 1 is stronger than the restriction
ρ ≤ 1 for fermions. In this sense such particles with g > 1 are sometimes called
ultrafermions.
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On the other hand, with g = 1/2 we obtain from Eq. (8.106)

w = 1

2

[
−1 +

√
1 + 4e2(ε−μ)/T

]
≡ 1

2
(−1 + R) , (8.116)

ρ = 2/R, ρ∗ = 1 − 1/R. (8.117)

Now the restriction ρ ≤ 2 with R ≥ 1 is weaker than ρ ≤ 1 for fermions. Hence
these particles with g = 1/2 have an exclusion property between fermions and
bosons. They are sometimes called semions.

For general values of g, it is hard to obtain distribution functions in a closed form.
However, there is a remarkable correspondence between ρ and ρ∗ as

ρ → gρ∗, w → 1/w, g → 1/g, ε − μ → −(ε − μ)/g, (8.118)

which may be called the particle-hole duality. The derivation is the subject of
Problem 8.6.

8.8 Quasi-Particles and Quasi-Holes in Thermodynamics

We shall gain another insight into the quasi-particle picture with exclusion statistics.
It is convenient to introduce the quantity pF by analogy with the Fermi momentum.
The distribution functions at T = 0 are given by

{
ρ(p) = 1/g, ρ∗(p) = 0,

(|p| < pF ≡ μ1/2
)

ρ(p) = 0, ρ∗(p) = 1, (|p| > pF)
(8.119)

which are step functions like those of particles and holes with the Fermi statistics.
The chemical potential is related to the density by μ = p2

F = (πng)2.
The particle and hole excitations correspond to |p| > pF and |p| < pF,

respectively. Accordingly for general temperature we introduce the parameters as

wp ≡ w, (for |p| > pF), wh ≡ w−1, (for |p| < pF). (8.120)

Then Eq. (8.105) is rewritten as

εp(p)/T ≡
(
p2 − μ

)
/T = log

(
1 + wp

)− gp log
(

1 + w−1
p

)
, (8.121)

εh(p)/T ≡
(
μ − p2

)
/(gT ) = log (1 + wh) − gh log

(
1 + w−1

h

)
, (8.122)
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where we have distinguished exclusion properties of particles and holes by defining
gp = g and gh = 1/g. Using Eqs. (8.121) and (8.122), we write Ω as

Ω

L
= −T

∫

|p|>pF

dp

2π
ln
(

1 + w−1
p

)
− T

g

∫

|p|<pF

dp

2π
ln
(

1 + w−1
h

)
, (8.123)

where the first term in the RHS represents particle excitations, while the second
term represents hole excitations. It is instructive to compare with Eq. (8.108) which
does not divide the rapidity regions at pF. In Eq. (8.123), the hole part has the factor
1/g which reflects the scaling of rapidities.

We next derive the effective charge of particles and holes. This is simply achieved
by looking at the coefficient to the chemical potential μ. The effective charge ep
of a particle excitation is ep = 1 independent of the statistical parameter, since
the coefficient of εp is always −1. On the other hand, the coefficient of εh is 1/g,
which implies the effective charge eh = −1/g for holes. This result generalizes the
particle–hole symmetry for g = 1 for fermions. Namely, with an integer g 	= 1, the
corresponding holes have a fractional charge.

In closing this chapter, we summarize the main difference between the Suther-
land model and the FQHE systems in two dimensions. In the Sutherland model,
and more generally in systems with exclusion statistics, there is duality between
particles and holes, but no particle–hole symmetry. The absence is easily understood
from the parabolic single-particle spectrum that has no particle–hole symmetry. On
the contrary, in the FQHE systems, quasi-particles obey the fractional exchange
statistics, where the phase of the wave function by the interchange of two quasi-
particles changes by ±π/q, rather than ±π for electrons. The quasi-electrons
and quasi-holes in Laughlin wave functions have the same fractional charge with
magnitude e/q, which is not the case in exclusion statistics. This particle–hole
symmetry is associated with the absence of kinetic energy in the ground Landau
level. Provided higher Landau levels can be neglected, the ground Landau level has
the particle–hole symmetry in the form of complete degeneracy.

From another viewpoint, one can compare construction of wave functions in
the excited states with only quasi-particles or only quasi-holes. We have seen that
constructions for quasi-holes are similar in both FQHE and Sutherland systems,
as given in Eqs. (8.39) and ΦgΦ in p. 198, respectively. However, for the particle
excitation in the Sutherland model, there is no construction like Eq. (8.42). Namely,
both particle and hole excitations are described in the form ΦgΦ. Hence fractional
statistics is a kind of family where each member has something in common, but also
has a distinct character.

Problems

8.1 Using the Gauss law for two-dimensional systems, derive Eqs. (8.34)
and (8.35).

8.2 Show that Eq. (8.57) describes the Slater determinant in the case of λ = 1.
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8.3 Prove the identity involving cotangent functions as given by Eq. (8.62).

8.4 Prove the rapidity relation given by Eq. (8.73). With the use of this relation,
show that the ground state energy is given by Eq. (8.78), as the sum of free quasi-
particle contributions.

8.5 Derive the entropy given by Eq. (8.96) starting from the expression in Eq. (8.84)
for bosons.

8.6 Express the duality relation between the distribution functions ρ and ρ∗ for a
general value of g.

Solutions to Problems

Problem 8.1
With the unit charge Q at the origin, the electric field E(r) at r is pointing radially
and its magnitude depends only on r = |r|. Hence the Gauss law takes the form:

2πrE(r) = Q, (8.124)

where we have chosen the unit so that the coefficient in the RHS does not involve
π . We obtain the scalar potential ϕ(r) as

ϕ(r) = −
∫ r

a

drE(r) = − Q

2π
ln
( r
a

)
, (8.125)

where a is the length at which ϕ(r) = 0. Choosing a = 2�B , we obtain V2 given by
Eq. (8.34).

To obtain the potential due to the neutralizing background with homogeneous
charge density −ρQ, we consider the integrated charge inside the circle with radius
r . Then the Gauss law gives

2πrE(r) = −πr2ρQ. (8.126)

The potential now is given by

ϕ(r) = −
∫ r

0
drE(r) = Q

4
ρr2. (8.127)

Putting r = 2�B |z| we obtain V1 in Eq. (8.35).

Problem 8.2
It is convenient to introduce the complex coordinate zj = exp(2π ixj /L), which
maps the original coordinate xj to a point zj on the unit circle in the complex plane.
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The periodic boundary condition is now built in. Using the expression

sin
[
π
(
xj − xk

)
/L
] = 1

2i
√
zj zk

(
zj − zk

)
, (8.128)

the wave function is rewritten as

Ψg = (2i)λN(N−1)
∏

j

z
λN(N−1)
j

∏

j<k

(
zj − zk

)λ
. (8.129)

In the case of λ = 1, the product of zj −zk reduces to the Vandermonde determinant.

With a shift of the total momentum by
∏

j z
λN(N−1)
j , the determinant is equivalent

to the Slater determinant where the plane-wave states are occupied up to the Fermi
momentum.

Problem 8.3
The identity is equivalent to another expression

cotα cotβ + cotβ cot γ + cot γ cotα = 1 (8.130)

with α + β + γ = 0. The two terms on the LHS sum up into

(cotα + cot γ ) cotβ = (cotα + cot γ )
1 − cotα cot γ

cotα + cot γ
, (8.131)

where the addition formula for the cotangent function is used together with β =
−α − γ . By factoring out cotα + cot γ , we obtain Eq. (8.130).

Problem 8.4
In the LHS of Eq. (8.73), the number of times for κi to appear with the plus sign is
N − i, from κi − κi+1 to κi − κN for any i. On the other hand, the negative sign
for κi appears i − 1 times, from κ1 − κi to κi−1 − κi . By combining both cases we
obtain the number N − i − (i − 1) = N + 1 − 2i for the coefficient in the RHS of
Eq. (8.73). The same argument applies to Eq. (8.77). We then use the formula

N∑

i=1

(
N + 1

2
− i

)2

= N

12

(
N2 − 1

)
, (8.132)

which corresponds to the summation of κ̃2
i,0. With multiplication of (2π/L)2 and

shifting the origin of energy by E0,N we recover Eq. (8.78).
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Note that the rapidity p and the momentum k in the thermodynamic limit are
related by

p = 1

2

∂ε(k)

∂k
, (8.133)

ε(k) = k2 + λ

∫
dk′|k − k′|ν(k′), (8.134)

which shows the character of p as the velocity of a quasi-particle.

Problem 8.5
In order to eliminate ν in favor of ρ, we find it most convenient to use Eq. (8.93).
As a preliminary we arrange the bosonic entropy as

(ν + 1) ln(ν + 1) − ν ln ν = ν

[(
1 + 1

ν

)
ln

(
1 + 1

ν

)
− 1

ν
ln

1

ν

]
. (8.135)

Furthermore the factor dk/dp = ρ(p)/ν(k) enters through the change k → p of
the integration variable. As a result, the first factor ν in Eq. (8.135) is replaced by ρ.
Then we use the relation ν(k)−1 = ρ(p)−1−g repeatedly, and use ρ∗ = 1−gρ after
all ν’s are eliminated. In this way we obtain Eq. (8.96) after a little rearrangement
of terms.

Problem 8.6
We rewrite the relation of distribution functions so that the particles and holes
exchange their roles. Dividing both sides of Eq. (8.105) by −g, we obtain

− ε − μ

gT
= g−1 lnw−1 +

(
1 − g−1

)
ln
(

1 + w−1
)
. (8.136)

Furthermore Eq. (8.107) leads to the relation

gρ∗ = gw

w + g
= 1

w−1 + g−1
. (8.137)

Hence we recognize the correspondence

ρ → gρ∗, w → 1/w, g → 1/g, ε − μ → −(ε − μ)/g (8.138)

between the particles and holes in their distribution functions. Equivalently this
relation is summarized as

ρ∗
(
ε − μ

T
; g
)

= 1

g
ρ

(
μ − ε

gT
; 1

g

)
, (8.139)

as a kind of duality.
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Chapter 9
Many-Body Perturbation Theory

Abstract This chapter deals with the field theoretical method to many-body
systems, especially the path-integral formalism for fermions with use of Grassmann
numbers. Green function appears as a natural element in Feynman diagram that
represents a group of terms in many-body perturbation theory. The graphical method
appeals to intuition, and is convenient to reorganize the perturbation series to infinite
order. The discussion in this chapter is rather technical, but is most useful in
understanding physical concepts including the dynamical mean field theory to be
explained in the next chapter.

9.1 Grassmann Numbers

We have discussed the coherent state already in Chap. 5 as a superposition of
states with different number n of bosonic particles. The phase factor exp(inθ) in
superposition has the fixed phase θ , while n taking positive integers. As shown in
Eq. (5.4), the coherent state is the eigenstate of the annihilation operator that changes
the particle number n to n − 1. Likewise, we can construct the fermionic coherent
state by superposition of occupation numbers 0 and 1 for each state. The resultant
state is very convenient for dealing with many fermion states.

It is necessary to introduce a special quantity called the Grassmann number that
anticommutes with another Grassmann number. Namely, the Grassmann numbers
η1 and η2 satisfy

η1η2 = −η2η1. (9.1)

The anticommutation property holds also in the product with fermion creation or
annihilation operator. On the other hand, a Grassmann number commutes with a
c-number.
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We can define the complex conjugate so as to satisfy (η∗)∗ = η and (η∗
1η1)

∗ =
η∗

1η1, as in the case of c-numbers. The construction of (η1η2)
∗ is the subject of

Problem 9.1. The derivative of the Grassmann number is defined as

∂

∂ηi
ηj = δij , (9.2)

which looks similar to ordinary derivative, except for ∂ηi being also a Grassmann
number.

Let us proceed to the integral of a function of Grassmann numbers. It suffices to
define the integrals of 1 and η since second and higher order terms of η vanish.
We impose the condition that the integral remains invariant against the linear
transformation η → η + ξ with use of a constant Grassmann number ξ . This
condition is satisfied by the definitions

∫
dηη = 1,

∫
dη1 = 0, (9.3)

where the first definition determines the norm of the integral, which is a c-number.
The 0 in the second integral is a Grassmann number, but is indistinguishable
from the ordinary 0. The second definition guarantees the invariance against linear
transformation. Comparison of Eqs. (9.2) and (9.3) shows that derivative and
integral of Grassmann numbers give identical results.

As the most important case, we take the integral of Gaussian functions of
Grassmann numbers. We start with the identity: exp(−η∗Aη) = 1 − η∗Aη, where
A is an arbitrary c-number. This identity can be confirmed by expanding the
exponential. Thus we immediately obtain

∫
dη∗dη exp(−η∗Aη) = A, (9.4)

where we have used Eq. (9.3). The Gaussian integration is generalized as

∫
dη∗dη exp

(−η∗Aη + ξ∗η + η∗ξ
) = A exp

(
ξ∗A−1ξ

)
, (9.5)

with ξ being any Grassmann number. This result is obtained either by expanding the
exponential or by the transformation η → η − A−1ξ, η∗ → η − ξ∗A−1.

Let us derive the multi-variable version of the Gaussian integration. With A being
an N × N Hermitian matrix of c-number elements, the following result holds:

∫ ∏

i

dη∗
i dηi exp

⎛

⎝−
∑

ij

η∗
i Aij ηj

⎞

⎠ = detA. (9.6)
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The result is obvious if A is a diagonal matrix, since the product of eigenvalues
is just detA. In a general case, we take a suitable unitary transformation to
diagonalize A, and use the new integral variables which result from the same unitary
transformation. Similarly, the multi-variable version of Eq. (9.5) is given by

∫ ∏

i

dη∗
i dηi exp

[
−
∑

ij

η∗
i Aij ηj +

∑

i

(
ξ∗
i ηi + η∗

i ξi
) ]

= detA exp

⎛

⎝−
∑

ij

ξ∗
i Gij ξj

⎞

⎠ ≡ Z
(
ξ∗, ξ

)
, (9.7)

where we have introduced the N × N matrix G = −A−1.
The average of fluctuating Grassmann variables is defined by

〈
η∗
i ηj

〉
0 ≡

∫ ∏

m

dη∗
mdηm η∗

i ηj exp

⎛

⎝−
∑

ij

η∗
i Aij ηj

⎞

⎠ / detA. (9.8)

This quantity is evaluated in terms of a second derivative of Z(ξ∗, ξ) as

〈η∗
i ηj 〉0 ≡ − lim

ξ∗,ξ→0

1

Z

∂2

∂ξi∂ξ
∗
j

Z(ξ∗, ξ) = Gji. (9.9)

Hence we recognize the correspondence ηj → ∂/∂ξ∗
j , η

∗
i → −∂/∂ξi . With use of

Eq. (9.7) for ξ -derivatives of higher orders, the average is generalized to the case of
2n Grassmann numbers. Namely, we obtain

〈
η∗

1ηn+1η
∗
2ηn+2, . . . , η

∗
nη2n

〉
0 =

∑

P

sgnP Gn+1,P (1)Gn+2,P (2)G2n,P (n),

(9.10)

where P represents the permutation of n (≤ N) variables (η∗
1, η

∗
2, . . . , η

∗
n), and the

sign factor sgnP = ±1 follows according to whether the permutation is even or
odd.

It is instructive to compare with the c-number Gaussian distribution. Let φi and
νi with i = 1, . . . , N be a set of complex numbers. Then the Gaussian integration
corresponding to Eq. (9.7) is given by

∫ ∏

i

dφ∗
i dφi exp

[
−
∑

ij

φ∗
i Aijφj +

∑

i

(
ν∗
i φi + φ∗

i νi
) ]

= πN detA−1 exp

⎛

⎝−
∑

ij

ν∗
i Gij νj

⎞

⎠ ≡ Zc(ν
∗, ν), (9.11)
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with G = −A−1 as in the Grassmann case. In the c-number case, we have to assume
the convergence of the integral. The average is now given by

〈φ∗
i φj 〉0 ≡ lim

ν∗,ν→0

1

Zc

∂2

∂νi∂ν
∗
j

Zc(ν
∗, ν) = Gji. (9.12)

The multi-variable correlation is given by

〈φ∗
1φn+1φ

∗
2φn+2, . . . , φ

∗
nφ2n〉0 =

∑

P

Gn+1,P (1)Gn+2,P (2)G2n,P (n), (9.13)

without the sign factor sgnP in contrast to the Grassmann case. Later in Sect. 9.3,
we shall use Eqs. (9.10) and (9.13) in proving the Wick’s theorem, which plays an
important role in many-body perturbation theory.

9.2 Coherent States for Fermions

We are now in a position to construct the coherent state for fermions. Let f † the
fermion creation operator of a certain state. The occupied state |1〉 and the vacant
state |0〉 are related as |1〉 = f †|0〉. The coherent state |η〉 is characterized by a
Grassmann number η and is defined by

|η〉 ≡ exp
(
f †η

)
|0〉 =

(
1 + f †η

)
|0〉 = |0〉 − η|1〉. (9.14)

It is clear from the definition that the coherent sate is a superposition of vacant
and occupied states. Moreover, it is an eigenstate of the annihilation operator f as
indicated by

f |η〉 = η|η〉. (9.15)

The conjugate of this relation corresponds to 〈η| = 〈η|f †.
The inner product of two coherent states is given by

〈η1|η2〉 = exp
(
η∗

1η2
)
. (9.16)

Hence any function F(f †, f ) = af + bf † + cf †f , including f and f †, satisfies
the relation:

〈η1|F
(
f †, f

)
|η2〉 = F

(
η∗

1, η2
)

exp
(
η∗

1η2
)
, (9.17)

where the constants a, b, c can be either c- or Grassmann numbers.
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It is most important for practical purpose to have the completeness condition,
or the representation of the unit operator in terms of coherent states. The set of
coherent states forms a overcomplete set for the Fock space spanned by |0〉 and |1〉.
The definition Eq. (9.14) leads to the completeness relation:

∫
dη∗dη|η〉〈η| exp

(−η∗η
) = |0〉〈0| + |1〉〈1| = 1, (9.18)

which is indispensable for representing the partition function in terms of path
integrals to be discussed shortly.

As the simplest case of using Grassmann numbers, we take the Hamiltonian
H(f †, f ) = Ef †f . This trivial model most clearly demonstrates the characteristics
of Grassmann numbers. The grand partition function Z is given by Z = 1 +
exp(−βE) with the origin of energy taken at the chemical potential. The same
partition function is written in terms of Grassmann numbers by

Z =
∫

dη∗
1dη1

〈
η1

∣∣∣e−βH
∣∣∣− η1

〉
exp

(−η∗
1η1

)
, (9.19)

where we have used the completeness condition Eq. (9.18), together with

〈n|η〉
〈
η|e−βH |n

〉
=
〈
η|e−βH |n

〉
〈n| − η〉 (9.20)

for n = 0, 1. The minus sign in the state | − η〉 follows from the anticommutation
property of η and η∗. It will be shown below that the minus sign is also related to
the antiperiodicity of the Green function with respect to the imaginary time β.

We can rewrite Eq. (9.19) in the form of path integral of the action, which is in
fact valid for any Hamiltonian. For this purpose we take a large number M (� 1)
and put δτ = β/M . Then we use the approximation exp(−βH) ∼ (1−δτH/M)M ,
which becomes exact in the limit of M → ∞. This operation is called the Trotter (or
Suzuki–Trotter) decomposition. We then insert the unit operator given by Eq. (9.18)
between all adjacent pairs of (1 − δτH/M), in total (M − 1) times. The partition
function is now given by

Z =
∫ M∏

i=1

dη∗
i dηiR

(
η∗

1, η2
)

exp
[−η∗

1 (η1 − η2)
]
R
(
η∗

2, η3
)

× · · ·R (
η∗
M, ηM+1

)
exp

[−η∗
M (ηM − ηM+1)

]
, (9.21)

where R(η∗
1, η2) = 1−δτH(η∗

1, η2) ∼ exp[−δτH(η∗
1, η2)] and ηM+1 ≡ −η1 from

Eq. (9.19). In the limit of large M , we may regard ηi as η(τ) which is a function of
the continuous variable τ in the range 0 < τ < β with the boundary condition
η(β) = −η(0). Then η(τ) can be Fourier decomposed with odd Matsubara
frequencies. Note that the maximum of the relevant Matsubara frequency should
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be smaller than the resolution (δτ )−1 of the Trotter decomposition. In other words,
we may replace η(τi) − η(τi+1) by δτ∂η(τ)/∂τ provided η(τ) is slowly varying in
the scale of δτ . Under this condition the first part of the integrand in Eq. (9.21) is
expressed as

R
(
η∗

1, η2
)

exp
[−η∗

1 (η1 − η2)
] ∼ exp

[
−δτ η∗(τ )

(
∂

∂τ
+ E

)
η(τ)

]
, (9.22)

with τ ∼ τ1 ∼ τ2 and similar expressions for general η(τi). The integration in
Eq. (9.21) can be carried out to with use of Eq. (9.6) as

Z = detτ

[
δτ

(
∂

∂τ
+ E

)]
, (9.23)

where the set of variables ηi (i = 1, 2, . . . ,M) is regarded as an M-dimensional
vector, and detτ denotes the determinant of the M × M matrix in the τ -space.
The meaning of ∂/∂τ will be made clear shortly by the Fourier transform of τ to
Matsubara frequencies.

After taking the logarithm of both sides, we obtain trace of the matrix, instead of
determinant, as given by

lnZ = Trτ ln

[
β

M

(
∂

∂τ
+ E

)]
= −βΩ, (9.24)

where Ω is the thermodynamic potential. The trace operation is performed in the
limit M → ∞ with the basis set which is anti-periodic in the region τ ∈ [0, β]. The
orthonormal complete set exp(−iεnτ)/

√
β with odd Matsubara frequencies εn =

(2n + 1)πT serves best for the basis set. The result is given, apart from a constant
term, by

βΩ = −
∑

n

ln (−iεn + E) , (9.25)

where ∂/∂τ is replaced by its eigenvalue −iεn. The summation in Eq. (9.25)
actually leads to a divergent result. The divergence originates from the replacement
η(τi) − η(τi+1) in Eq. (9.21) by δτ∂η(τ)/∂τ . As we have discussed between
Eqs. (9.21) and (9.22), this approximation breaks down in the limit of large
Matsubara frequency. Fortunately, this divergence can be managed in practical
cases. Namely, if we take the second derivative of Eq. (9.25) with respect to E,
we obtain the convergent result:

∂2Ω

∂E2
=
∑

n

1

(iεn − E)2
= β2eβE

(
eβE + 1

)2
. (9.26)
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By two-fold integration with respect to E, we recover the physically meaningful
part of Eq. (9.25). The actual procedure is the subject of Problem 9.2.

Generalizing the variable η(τ) used above, we introduce the Grassmann variable
ηα(τ) for each one-particle state α. Note that α can be a continuous index such as the
spatial coordinate in field theory. Since the integrand contains the functions ηα(τ),
the corresponding multiple η-integrals are called the functional integral, which is
written symbolically as Dη∗Dη. By analogy with the path-integral theory for one-
body quantum mechanics [1], the present version with Grassmann numbers is also
called the path integral.

We are in the position to describe the procedure for the path-integral represen-
tation for a general Hamiltonian H which may include mutual interactions. Let
F({f †

α }, {fα}) be a function of fermion operators where the creation operators
always stand on the left of annihilation operators in each term. Such ordering is
called the N -product as used in Eq. (7.21). As a generalization of Eq. (9.17), we
obtain the matrix element

〈
{ηα}

∣∣∣F
({

f †
α

}
, {fα}

)∣∣∣
{
η′
α

}〉 = F
({
η∗
α

}
,
{
η′
α

})
exp

(
∑

α

η∗
αη

′
α

)
. (9.27)

Then, as a generalization of Eq. (9.21), the partition function is written as

Z =
∫

Dη∗Dη exp(−S) (9.28)

S =
∫ β

0
dτ

[
∑

α

η∗
α

∂

∂τ
ηα + H(τ)

]
≡
∫ β

0
dτL(τ ), (9.29)

where H(τ) is the Hamiltonian in terms of Grassmann variables at τ , in place of
fermion operators. By analogy with the path-integral theory of quantum mechanics
in real time, S is called the action, and L(τ ) is called the Lagrangian.

9.3 Wick’s Theorem

The Grassmann path integral is possible not only for the partition function but also
for correlation functions including the Matsubara Green function. For a general
Hamiltonian the Green function

Gβα(τ2 − τ1) = −
〈
Tτfβ(τ2)f

†
α (τ1)

〉
=
〈
Tτf

†
α (τ1)fβ(τ2)

〉
(9.30)



222 9 Many-Body Perturbation Theory

with use of the Matsubara representation fα(τ) = exp(τH)fα exp(−τH) is
equivalently given by

Gβα(τ2−τ1) =
∫

Dη∗Dη η∗
α(τ1)ηβ(τ2) exp(−S)/Z ≡ 〈η∗

α(τ1)ηβ(τ2)〉. (9.31)

Note that the time ordering indicated by Tτ is absent in the Grassmann integral. In
order to prove Eq. (9.31), we first assume τ1 > τ2 and rewrite 〈f †

α (τ1)fβ(τ2)〉 as

Z−1Tr exp [−(β − τ1)H ] f †
α exp [−(τ1 − τ2)H ] fβ exp [−τ2H ] . (9.32)

Now we perform Tr operation using the completeness relation Eq. (9.18) and the
Trotter decomposition for exponentials including H as in Eq. (9.21). We thus obtain
the first equality in Eq. (9.31). In the case of τ1 < τ2, we change the order
of the fermion operators, and proceed in the same way to use the completeness
relation and Trotter decomposition. The anticommutation property ηβ(τ2)η

∗
α(τ1) =

−η∗
α(τ1)ηβ(τ2) compensates for the minus sign coming from the time ordering

Tτ . Moreover, we may include a fermionic source field ξα(τ )
∗ and ξα(τ ) in the

Lagrangian as ξ∗η+η∗ξ with abbreviated notation. Then the second ξ -derivative of
the partition function Z(ξ∗, ξ) gives the Green function by analogy with Eq. (9.9).
Namely, we obtain

〈η∗
α(τ1)ηβ(τ2)〉 = − lim

ξ∗,ξ→0

1

Z

δ2

δξα(τ1)δξ
∗
β (τ2)

Z(ξ∗, ξ) = Gβα(τ2 − τ1). (9.33)

Thus we recognize the correspondence

ηα(τ) → δ/δξ∗
α (τ ), η∗

α(τ ) → −δ/δξα(τ ), (9.34)

in taking the average of Grassmann numbers.
Let us take the special case of a free fermion Hamiltonian

H0 =
∑

αβ

hαβf
†
α fβ, (9.35)

for which we can derive the Green functions exactly. In this example the path-
integral formalism provides the simplest proof of the Wick’s theorem, which is the
key element in performing the perturbation theory for the general interacting case.
The Green function is derived by the Gaussian integration, with close similarity to
Eq. (9.8). The matrix A in the Gaussian integration is interpreted as

Aij → (
δαβ∂/∂τ + hαβ

)
δ
(
τ − τ ′) . (9.36)

The matrix basis (i, j ) is now extended from the single-particle states (α, β) to
include the continuous imaginary time (τ, τ ′). Correspondingly, the Green function
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matrix G = −A−1 also has double basis sets: α and τ , and the matrix element is
written as in Eq. (9.33). The Fourier transform to Matsubara frequencies results in
the replacement ∂/∂τ → −iεn, and the Green function matrix G becomes diagonal
in εn. The explicit form as a matrix with the α, β basis is given by

G0(iεn) = (iεn − h)−1 , (9.37)

where the suffix 0 is put for emphasizing the free-fermion system.
Using Eq. (9.7) for Z(ξ∗, ξ), it is now straightforward to derive the identity:

〈
Tτf

†(τ1)f (τn+1) . . . f
†(τn)f (τ2n)

〉

0

=
∑

P

sgnP G0
(
τn+1 − τP (1)

)
. . . G0

(
τ2n − τP (n)

)
, (9.38)

where the average 〈· · · 〉0 is taken for the free-fermion system, and the index α for
single-particle states is omitted for notational simplicity. This result corresponds to
Eq. (9.10) for Grassmann numbers, and is called the Wick’s theorem. The original
version of the theorem is for the field theory at zero temperature, and the extension
to finite temperature has been achieved by Bloch and de Dominicis [2]. Hence the
theorem is also called by their names.

We now derive the time-independent form of the Wick’s theorem that is
convenient to use in the Goldstone diagram method. Only in this paragraph we use
the notations c†(τ ) and c(τ ) for creation and annihilation operators, and F(τ) to
represent either of them. Presence of plural single-particle eigenstates αj is taken
into account simply as Fj (τ). We obtain the limiting case of Eq. (9.38) by relabeling
the imaginary time as τ1 > τ2 > · · · > τ2n > 0:

lim
τ1→0

〈TτF1(τ1)F2(τ2) . . . F2n(τ2n)〉0 = 〈F1F2 . . . F2n〉0

=
∑

P

′sgnP 〈FP1FP2〉0 . . . 〈FP(2n−1)FP (2n)〉0, (9.39)

where the summation over P is restricted to such permutations that satisfy P(2j −
1) < P (2j) for j = 1, . . . , n and P1 < P3 < · · · < P(2n − 1), which
implies P1 = 1. The average 〈FPiFP(i+1)〉0 becomes either the particle occupation
number f (hα) for if FPi = c†

α, FP(i+1) = cα , or the hole occupation number
f (−hα) = 1 − f (hα) if FPi = cα, FP(i+1) = c†

α . Otherwise the corresponding
permutation P gives zero to the average. Here f (hα) is the Fermi distribution
function. In evaluating the Goldstone diagram, we encounter the T = 0 version of
Eq. (9.39). A simple case with n = 2 has appeared in Fig. 5.4 of Chap. 5. Because
of different spin states involved in the average, the partition in Eq. (9.39) is unique
in this case. Then the Wick’s theorem becomes trivial, and the product of number
operators is evaluated as the product of occupation numbers of particles and holes.
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In the presence of two-body interaction V (f †, f ), the partition function Z cannot
be derived explicitly in general. Nevertheless, we may formally represent Z starting
from the non-interacting counterpart Z0(ξ

∗, ξ). With use of Eq. (9.34), we obtain [2]

Z = − lim
ξ∗,ξ→0

exp

[
−
∫ β

0
dτV

(
δ

δξ
,− δ

δξ∗

)]
Z0(ξ

∗, ξ), (9.40)

where V (f †, f ) has the N-product form. Expanding the RHS in terms of V ,
and applying the Wick’s theorem, we recover the perturbation expansion of Z to
arbitrary order.

The perturbation expansion can be performed also for the Green functions. For
the single-particle Green function, this is achieved by combination of Eqs. (9.33)
and (9.40). The resultant quantity is expressed in terms of diagrams. Some examples
will be shown in Fig. 9.1. Such pictorial representation of the many-body perturba-
tion theory is first invented by Feynman [3], and is called the Feynman diagrams.
The constituents of a Feynman diagram are (single-particle) Green functions and
interactions. In contrast with Goldstone diagrams we have dealt with so far, a
Feynman diagram combines all cases of the time ordering of operators into a single
diagram. Thus the Green function of a particle and that of a hole are given by the
same diagram. In contrast, the Goldstone diagram distinguishes the particle and hole
by the occupation numbers 1 − f (ε) and f (ε), as has been mentioned in p.98.

The Feynman diagrams are classified into linked (connected) and unlinked
(unconnected) ones. A linked diagram cannot be separated into unlinked diagrams
without breaking interaction line(s) and/or Green function lines. Unlinked diagrams
need not be considered in the perturbation expansion of Green functions since the
Wick’s theorem guarantees cancellation of unlinked diagrams in the final average.
Such simplifying property of the many-body perturbation theory is referred to as the
linked cluster expansion. Since we have Wick’s theorem both for fermion operators
as Eq. (9.38) and for Grassmann numbers as Eq. (9.10), we may use either of them
to make the perturbation expansion. Utilizing the absence of the time-ordering Tτ
in the path-integral scheme, we may simply split the action as S0 + S1, where S0

corresponds to the free action with H = H0 in Eq. (9.29), while S1 = ∫ β

0 dτV (τ)

with V (τ) expressed in terms of Grassmann fields. The partition function is written
as

Z = Z0 〈exp (−S1)〉0 , (9.41)

where Z0 derives from S0, and 〈· · · 〉0 indicates the average with respect to S0.
Taking the logarithm of Eq. (9.41), we can derive the perturbative part Ω1 for the
thermodynamic potential as

Ω1 = −T
[〈exp (−S1)〉c − 1

]
, (9.42)
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where 〈· · · 〉c indicates the cumulant average with respect to S0. By definition, the
cumulant average is contributed only by the linked Feynman diagrams.

9.4 Sum Rule for Green Functions and Variational Principle

Most quantum many-body systems are impossible to be solved exactly. One of the
established methods to proceed is the perturbation theory. Even for systems with
large two-body interaction, one may find a hidden small parameter to construct a
reliable approximation scheme. We have encountered such an example in Sect. 6.4.
On the other hand, it is sometimes possible to derive formal information that is free
from approximation. In this section we discuss such exact relation in Fermi liquids
using the Green function formalism. The variational principle plays an important
role in the derivation.

As a preliminary, we recall the variational principle, or simply the stationary
property, in thermodynamics. For example, the Helmholtz free energy F has an
infinitesimal change dF = −SdT − pdV + μdN according to variations of its
natural thermodynamic variables. Hence if we vary the other variables such as p

or μ with fixed T , V,N , we obtain the stationary property dF = 0. Similarly Ω

is stationary against variation of N or p as long as its natural variables T , V,μ are
fixed. Namely, we obtain

∂F

∂μ

)

T ,V,N

= ∂F

∂p

)

T ,V,N

= 0,
∂Ω

∂N

)

T ,V,μ

= ∂Ω

∂p

)

T ,V,μ

= 0. (9.43)

We shall develop analogous argument in the Green function formalism. For
concise treatment, it is convenient to add

Sext =
∫ β

0
dτ
∫ β

0
dτ ′η∗

α(τ )φαβ
(
τ − τ ′) ηβ

(
τ ′) (9.44)

to the system action S as given by Eq. (9.29). Here η∗
α and ηβ are Grassmann

numbers corresponding to f †
α and fβ , respectively, and φαβ(τ − τ ′) is a fictitious

external field. We use the notation Tr to represent the path integral
∫ Dη∗Dη, which

is equivalent to trace operation over all degrees of freedom for fermions including
Matsubara frequencies or imaginary time.

Let δφ an infinitesimal change of the external field. The corresponding change
δΩ of the thermodynamic potential is given by

βδΩ(φ) = Tr(Gδφ), (9.45)

where G is the Green function matrix with space-time indices. In order to utilize
the variational principle, we now represent δΩ in terms of δG instead of δφ. The
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(a) (b) (c)

Fig. 9.1 Examples of Feynman diagrams for the self-energy. The arrow in the Green function
indicates the propagation of fermions, and the dashed line represents the two-body interaction.
The second order self-energy include contributions from (a) and (b). The black circle in (c) is
called the vertex part that includes not only the elementary interaction processes shown in (a) and
(b), but also all higher order Feynman diagrams

analogy with thermodynamics is made by the correspondence δG → dN and δφ →
−dμ.

Let g be the “bare” Green function, which refers to the one in the non-interacting
system and without φ. The “dressed”, or exact Green function G is related to g by

G−1 = g−1 − φ − Σ, (9.46)

where Σ is called the self-energy. Figure 9.1 shows some examples of Σ .
Equation (9.46), which is called the Dyson equation, leads to another form of δΩ
via the relation

Gδφ = −Gδ
(
G−1 + Σ

)
= −δ

(
lnG−1 + GΣ

)
+ (δG)Σ. (9.47)

The trace of the last term (δG)Σ is written as

δΦ = Tr(ΣδG), (9.48)

which defines the new quantity Φ. In terms of Feynman diagrams, Φ consists of
all “skeleton” diagrams that contribute to Ω . The skeleton refers to such diagrams
where the self-energy part is included only implicitly through constituent Green
functions G [2, 4]. Using the quantity Φ, we can integrate Eq. (9.45) to obtain

β(Ω{G} − Ω0) = Φ{G} − Tr(ΣG) − Tr ln
(
G−1g

)
, (9.49)

where Ω0 is the thermodynamic potential for free fermions. The natural variables
in Eq. (9.49) correspond to φ, T , and V . Hence making δG 	= 0 with δφ = 0 is
analogous to varying N with fixed μ in the thermodynamic potential. Note that
Eq. (9.49) does not have explicit dependence on φ. Therefore Ω with φ = 0 should
be stationary against variation of G [5, 6]. Problem 9.3 deals with the explicit
procedure of variation.

Using the variational property, we prove the following statement valid at zero
temperature: The volume inside the Fermi surface is independent of the mutual
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interaction as long as the symmetry of the system is unbroken. This property is
often called the Luttinger theorem, or sometimes Luttinger–Friedel sum rule [4].
Let us consider the zero-temperature limit of Eq. (9.49) with imaginary frequencies.
For any Feynman diagram that constitutes Φ, the result is invariant against uniform
shift iε in all the constituent Green functions. Namely, we have

δΦ = δεTr

(
Σ

∂G

∂ε

)
= 0. (9.50)

By partial integration over ε and noting that ΣG vanishes at both ends of integration
at ε = ±∞, we obtain from Eq. (9.50)

Tr

(
G
∂Σ

∂ε

)
= 0. (9.51)

Next using the algebraic property

δ lnG = −δ ln
(
g−1 − Σ

)
= −G(iδε − δΣ),

we obtain

∂ lnG

i∂ε
= −G + G

∂Σ

i∂ε
, (9.52)

where the second term in the RHS vanishes after taking the trace. The total number
N of fermions is then obtained as

N = Tr exp (iε0+)G = −Tr exp (iε0+)
∂ lnG

i∂ε
, (9.53)

where we put the convergence factor exp(iε0+). The details are discussed around
Eq. (9.69).

For a spinless system with translational invariance, the result is most simply
represented in the momentum space where the Green function matrix becomes
diagonal. Namely, we use iε = ω and perform the trace by

Tr →
∑

k

∫ ∞

−∞
dε

2π
=
∑

k

∫

C

dω

2π i
, (9.54)

where the integration contour C is indicated in Fig. 9.2. Then Eq. (9.53) is rewritten
as

N =
∑

k

∫ 0

−∞
dω

π
Im

∂ lnG(k, ω + i0+)
∂ω

= 1

π
Im

∑

k

ln [−G(k, i0+)] , (9.55)



228 9 Many-Body Perturbation Theory

Fig. 9.2 Integration contour
C in Eq. (9.54), which has
been deformed from the
original one along the
imaginary axis

Imω

Reω

ω

C

where the minus sign in front of G(k, i0+) is due to the contribution of the integrand
at ω → −∞.

From now on, we make explicit use of a Fermi liquid property. The lifetime of
a quasi-particle tends to infinity at the Fermi surface. More generally we can prove
that Σ(k, i0+) is a real number for general momentum k. The proof of this property
is the subject of Problem 9.4. With the real self-energy, G(k, i0+) is also real except
for the case εk + Σ(k, i0+) = 0 where the Green function is divergent. If |k| is
small and G(k, i0+) > 0, the phase given by Im ln[−G(k, i0+)] becomes π . On
the other hand, with |k| → ∞, G(k, i0+) tends to zero from negative side. The set
of momentum k where G(k, i0+) changes sign is nothing but the Fermi surface.
Namely, Eq. (9.55) states that the total number N of particles is given by the volume
inside the Fermi surface. Hence with fixed N , the mutual interaction, how strong
it may be, keeps intact the Fermi volume of the free Fermi gas. Thus the Luttinger
theorem is proven. In the presence of periodic potential as in metals, the Fermi
surface is not a sphere but takes a complicated shape in general. Accordingly, the
Green function depends on the direction of k, and so is the Fermi surface. Even
in this case, the volume inside the Fermi surface is related to the total number of
itinerant electrons in the same way as in the absence of mutual interactions. Hence
the Luttinger theorem is practical in dealing with strongly correlated electrons [5].

We now turn to the Fermi liquid without the translational invariance nor lattice
periodicity. The most important is a resonant impurity in metallic matrix. Let us
consider the Anderson model as given by Eqs. (6.1) and (6.2). If the ground state
is connected smoothly from the non-interacting limit U = 0, we obtain the result
corresponding to Eq. (9.55) [7]:

nf = 2

π
Im ln

[−Gf (i0+)
]
, (9.56)

where nf is the occupation number of the local state which may be a non-integer,
and Gf (i0+) is the Green function of local electrons at the Fermi level. The factor
2 in the RHS comes from the spin degrees of freedom. Equation (9.56) is called the



9.5 Effective One-Body Problem Under Fluctuating Fields 229

Friedel sum rule. Since both Eqs. (9.55) and (9.56) originate from the same Fermi
liquid property of infinite lifetime at the Fermi level, it is reasonable to call them
together as the Luttinger–Friedel sum rule.

The phase α of the Green function, as defined by Gf (i0+) = |Gf (i0+)| exp(iα),
enjoys a simple relation nf = 2α/π . If Gf (i0+) is pure imaginary, we obtain α =
π/2 and nf = 1. The Kondo model represents this limiting case explicitly.

9.5 Effective One-Body Problem Under Fluctuating Fields

It is possible to convert the interaction among electrons into an effective external
field, which is fluctuating both spatially and temporally. After the conversion, the
path integral over fermionic degrees of freedom can be performed exactly since it is
the Gaussian integral. Usually, of course, the remaining average over effective fields
cannot be performed exactly. Thus the conversion may seem merely a replacement
of the problem. Nevertheless, in some cases, this conversion of the problem turns out
useful. For example, the fluctuating external fields may be treated more conveniently
in numerical calculations. In approximate analytic treatment, on the other hand,
various mean fields can be introduced easily in the framework of effective external
fields. In this section, we describe this framework briefly by taking the Hubbard
model.

In the partition function given by Eq. (9.21), the factor

exp
(−δτUn↑n↓

)
, (9.57)

describes the two-body interaction. Here we focus on a certain (arbitrary) site in the
system and omit the site index for brevity. The operator n↑n↓ can be equivalently
given in terms of occupation number n and spin Sz operators as

n↑n↓ = 1

4
n2 − (Sz)

2 (9.58)

which is more convenient for Gaussian integration. We first assume n = n↑ + n↓ as
constant (=1) and concentrate on the spin part (Sz)2. We use the identity including
a positive constant A:

exp
(
Ay2

)
=
∫ ∞

−∞
dx√
2πA

exp

(
−x2

A
− 2xy

)
, (9.59)

which is analogous to Eq. (9.11). In the case of A < 0, we obtain similar identity
by replacing the integration range of x by (−i∞, i∞). The spin part of Eq. (9.57) is
thus converted to the one-body form in Eq. (9.59) with substitutions:

A = U, y = √
δτSz, x = √

δτφ. (9.60)
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The partition function Z of the Hubbard model with the constraint n = 1 is then
represented as

Z =
∫

Dη∗DηDφ exp

{
−
∫ β

0
dτ
[L0(τ ) + L2(τ ) + Lφ(τ )

]}
, (9.61)

L2(τ ) = 1

U

∑

i

φi(τ )
2, Lφ(τ ) = 2

∑

i

φi(τ )S
z
i (τ ), (9.62)

where L0 is the Lagrangian of the non-interacting system with U = 0. This
procedure to rewrite Z with the auxiliary field φ is called the Hubbard–Stratonovich
transformation.

It is possible to carry out the Gaussian path integral over η∗ and η exactly. The
result is given by

Z =
∫

Dφ exp

[
−
∫ β

0
dτL2(τ ) + Tr ln

(
g−1 − φσz

)]
, (9.63)

where Tr indicates trace over spin, spatial, and temporal degrees of freedom, and g

is the bare Green function matrix. We have encountered a simpler form equivalent
to Tr ln g−1 in Eq. (9.25). In this way, the system with the two-body interaction U is
replaced by the equivalent one-body system under the fluctuating effective field φ.

We consider now the correlation function of spins. Using Eq. (9.62) we obtain

〈
TτS

z
i (τ )S

z
j

(
τ ′)〉 = Z−1

∫
Dη∗DηDφ exp

[
−
∫ β

0
dτ {L0(τ ) + L2(τ )}

]

× ∂2

4∂φi(τ )∂φj (τ ′)
exp

[
−
∫ β

0
dτLφ(τ )

]
, (9.64)

where ∂/∂φi behaves as the spin operator Sz
i (τ ). This is naturally understood by

regarding φi as a fluctuating magnetic field conjugate to Sz
i . By partial integration

to operate ∂/∂φi on L2(τ ) in Eq. (9.64), and by space-time Fourier transform, we
obtain the spin susceptibility as

χ(q, iν) = 1

U

[
1

U

〈
|φ(q, iν)|2

〉
− 1

]
, (9.65)

where φ(q, iν) is the Fourier transform of φi(τ ), and 〈. . .〉 is the average over
fluctuating effective field φ. This result suggests that φi(τ ) represents the fluctuating
magnetic moment. However, the fluctuation 〈|φ(q, iν)|2〉 tends to U in the high-
frequency limit, instead of going to zero. This limiting value is cancelled by the
term −1 in the RHS of Eq. (9.65). Since the fluctuation of φ is complicated, it
is impossible to evaluate Eq. (9.65) exactly. The simplest approximation is to use
the Gaussian fluctuation for φ, which amounts to the lowest-order expansion of
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φ in the exponent of Eq. (9.63). Problem 9.5 deals with deriving the approximate
susceptibility.

The spin–charge decomposition made in Eq. (9.58) is not unique. For example,
the rotational invariance in the spin space allows the replacement (Sz)2 → S2/3.
If one uses the latter representation, the effective field becomes a vector, and the
lowest-order result for χ(q, iν), which will be given in Eq. (9.75), involves U/3 in
place of U . The discrepancy is traced to the approximation in the expansion of φ.
Since the factor 1/U in Eq. (9.65) lowers the degree of U by one, it is necessary to
expand the logarithmic function up to O(φ4) in order to derive χ(q, iν) correctly
up to O(U). Then 〈|φ(q, iν)|2〉 is evaluated up to O(U2). It is a fortunate accident
in using Sz that the lowest-order theory can derive the susceptibility equivalent
to the mean field theory. Finally we comment on including the fluctuation of n

by introducing the corresponding effective field. By a procedure similar to obtain
Eq. (9.65), the charge susceptibility is represented as the second moment of the
effective field.

Problems

9.1 Define (η1η2)
∗ in a proper manner for general Grassmann numbers η1, η2.

9.2 ∗ Derive the physically meaningful result from Eq. (9.25) where the RHS is
divergent as it stands.

9.3 Demonstrate the variational property δΩ/δG = 0.

9.4∗ How do the Luttinger theorem and Eq. (9.55) depend on perturbation theory in
the two-body interaction v?

9.5 Expand the logarithm in Eq. (9.63) up to O(φ2), and derive the dynamical
susceptibility from Eq. (9.65).

Solutions to Problems

Problem 9.1
The complex conjugate is defined so as to satisfy the equality (η∗η)∗ = η∗η, which
is analogous to the Hermite conjugate of the matrix product. Then we have to follow
the definition

(η1η2)
∗ = η∗

2η
∗
1 = −η∗

1η
∗
2,

(
η∗

2η
∗
1

)∗ = η1η2. (9.66)
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The minus sign in −η∗
1η

∗
2 may appear strange if both η1 and η2 are “real” Grassmann

numbers with η∗ = η. However, the product of two real Grassmann numbers need
not be real.

Problem 9.2∗
By integrating Eq. (9.26) we obtain

∂Ω

∂E
= f (E) + C1, (9.67)

where f (E) = 1/[ exp(βE) + 1] and C1 is a constant of integration. Further
integration leads to

Ω = −T ln
[
1 + exp(−βE)

]+ C1E + C2, (9.68)

where C2 is another integration constant. The occupation number given by ∂Ω/∂E

should go to zero in the limit E → ∞. This condition makes C1 = 0. On the other
hand, C2 only sets the origin of Ω , or the Hamiltonian H , and remains arbitrary. We
put C2 = 0 for simplicity.

We now try to avoid the divergence by modifying Eq. (9.25). Writing 0+ as
positive infinitesimal, we make use of πδ(x) = −Im (x + i0+)−1. Then we rewrite
the thermodynamic potential Ω = Ω(E) as

Ω =
∫ ∞

−∞
dε

2π i
Ω(ε)

(
1

−ε + E + i0+
− 1

−ε + E − i0+

)

=
∫ ∞

−∞
dε

2π i
f (ε) [ln (−ε + E + i0+) − ln (−ε + E − i0+)]

=
∫

C

dz

2π i
exp (z0+) f (z) ln (−z + E)

= −T
∑

n

exp (iεn0+) ln (−iεn + E) , (9.69)

by partial integration. The integration contour C is the same as that shown in
Fig. 3.3. However, this time the contour runs originally parallel to the real axis along
both directions, and is continuously deformed so as to pick up all poles of f (z) at
z = iεn = (2n+ 1)iπT lying on the imaginary axis of z. The convergence factor is
inserted so that exp(z0+)f (z) goes to zero with z → ±∞. The last line of Eq. (9.69)
is derived by taking the residues at all poles of f (z). In other words, Eq. (9.25) is
made finite by insertion of the factor exp(iεn0+).
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Problem 9.3
Variation of each term composing Ω in Eq. (9.49) reads

δΦ = TrΣδG, −δ(ΣG) = −(δΣ)G − ΣδG, −δ ln
(
G−1g

)
= (δΣ)G.

(9.70)

These terms clearly add up to zero. Hence we obtain δΩ = 0. The stationary
property does not depend on whether the natural variable is δG or δΣ , as long
as the relation G−1 = g−1 − Σ holds.

Problem 9.4∗
In the original derivation [5] the perturbation series in v is expressed by Feynman
diagrams, and Φ is derived by analysis of the diagrammatic structure. Therefore the
proof needs convergent perturbation series. On the other hand, the present derivation
of Eqs. (9.49) and (9.55) has assumed only the continuity against the change of
external field φ. The perturbation theory in v has not been used [6]. Therefore,
Eq. (9.55) should be valid even for one-dimensional systems where the perturbation
theory in v is not valid [8]. On the other hand, the Luttinger theorem requires the
real self-energy at the Fermi level, which relies on perturbation theory in v.

Let us explain the logic for the real self-energy by taking the Feynman diagram
in Fig. 9.1c. Similar argument applies to general diagrams with more internal lines.
After analytic continuation to real frequencies, the right-going internal line has the
energy ε1, and two left-going lines have ε2, ε3. Correspondingly, each line has the
momentum ki with i = 1, 2, 3 and the spectral function ρ(ki , εi) as defined by
Eq. (3.100). The imaginary part is then given by

−ImΣ (k, ε + i0+) ∼
∫

1,2,3
|Γ123|2ρ(k1, ε1)ρ(k2, ε2)ρ(k3, ε3)f (ε1)f (−ε2)f (−ε3)

× δ(ε + ε1 − ε2 − ε3)δ(k + k1 − k2 − k3), (9.71)

where Γ123 is the vertex part, and the integration is written symbolically. The Fermi
function f (ε) at zero temperature is reduced to the step function θ(−ε). For a
nonzero product of Fermi functions, it is necessary to have ε1 < 0 and ε2, ε3 > 0.
With this combination, however, it is impossible to have nonzero delta function
for ε = 0. Thus we obtain ImΣ(k, i0+) = 0, which means the real self-energy
at the Fermi surface. Note that the momentum k is arbitrary. Moreover, since the
momentum conservation does not play any role, the argument applies equally to
impurity systems, resulting in the Friedel sum rule.

If the self-energy has five or more internal lines, similar argument leads to the
zero product of Fermi functions and the energy-conserving delta function. Hence
we can safely take G(k, i0+) real in Eq. (9.55).
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Problem 9.5
We make the expansion by writing φz ≡ φσz

ln
(
g−1 − φz

)
∼ ln g−1 − gφz + 1

2
gφzgφz + O

(
φ3
)
, (9.72)

where g is the bare Green function matrix. Taking the trace and making the Fourier
transform, the O(φ2) term in Eq. (9.72) gives χ0(q, iν) as the coefficient of φ2. This
process is similar to the one in Eq. (3.140). Hence the coefficient φ2 in the action is
modified as

1

U
→ 1

U
− χ0(q, iν), (9.73)

which determines the Gaussian fluctuation of φ. Namely, we obtain

〈
|φ(q, iν)|2

〉
=
(

1

U
− χ0(q, iν)

)−1

(9.74)

and consequently

χ(q, iν) = 1

U

(
1

1 − Uχ0(q, iν)
− 1

)
= χ0(q, iν)

1 − Uχ0(q, iν)
. (9.75)

This result is the same as the one obtained in the random phase approximation
(RPA), which we have encountered in Eq. (6.80).
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Chapter 10
Dynamical Mean Field Theory

Abstract In the ordinary mean field theory, the effective field is static. If one
allows temporal variation of the effective field, fluctuation effects of the corre-
sponding field can be included. The correlation problem in a large system is then
replaced by a single-site problem surrounded by a dynamical effective medium.
The effective impurity system is regarded as zero-dimensional. It can be shown
that the replacement by an effective impurity is exact in the limit of large number
of neighboring sites, which is the case in infinite dimensions. Hence the zero and
infinite dimensions are connected continuously. In this way the dynamical mean
field theory (DMFT) approaches actual three-dimensional systems from the infinite-
dimensional limit. The DMFT has achieved remarkable success in understanding
those many-body effects which come from strong local correlations. This chapter
explains the DMFT starting with the background of its development.

10.1 Mean Field and Fluctuations

The concept of mean field, also called molecular field, has a long history in physics.
One of the most successful applications in condensed matter is the BCS theory
of superconductivity where the two-body interaction is replaced by a form given
by Eq. (5.18). The BCS theory is highly accurate if the transition temperature Tc
is much smaller than the Fermi energy. Another remarkable success is the Fermi
liquid theory described in Chap. 4 where the interaction effect is taken into account
in terms of the Landau parameters. In both cases, mean fields comprise a large
number of degrees of freedom. Hence individual fluctuation affects the magnitude
only slightly.

The mean field is most simply defined in the momentum space in these examples
for itinerant fermions. In strongly correlated electron systems, on the other hand, it
is sometimes more convenient to start from the localized picture, even though the
ground state becomes a Fermi liquid. In this section we study the mean field theory
from the localized picture. Let us first take the Ising model as the simplest model
with localized degrees of freedom. The Ising model has the variable σ i taking ±1
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at each site i. Under a magnetic field h in the z direction, the model can be written
as

H = −J
∑

〈ij 〉
σ iσ j − h

∑

i

σ i, (10.1)

where 〈ij 〉 are the nearest-neighbor sites, and we consider the ferromagnetic case
J > 0. The molecular (Weiss) field hW at arbitrary site i is defined by

hW = J
∑

j∈n(i)
〈σ j 〉 = JZnm, (10.2)

where n(i) denote the set of nearest-neighbor sites whose number is Zn, and 〈σ j 〉 =
m is the average of σ j to be determined self-consistently. One has Zn = 2d in the
d-dimensional hypercubic lattice. The mean field Hamiltonian HMF is given by

HMF = −(hW + h)
∑

i

σ i, (10.3)

which gives the magnetization as

m = tanh[β(hW + h)], (10.4)

with β = 1/T . Together with Eq. (10.2), hW is determined self-consistently. Even
without h, nontrivial solution m 	= 0 emerges if T is smaller than the Curie
temperature Tc = JZn.

Let us now ask how reliable is the mean field approximation (MFA). If hW
consists of contribution of many (Zn � 1) spins, fluctuation effect from each spin
should be slight. To be more quantitative, we consider the deviation from the mean
field as defined by

ΔhW ≡ J
∑

j∈n(i)
(σ j − m), (10.5)

which becomes zero on average. The variance is evaluated as

〈
(ΔhW)2

〉
= J 2

∑

j∈n(i)

〈(
σ j − m

)2
〉
= Z−1

n T 2
c

(
1 − m2

)
, (10.6)

with use of 〈(σ j − m)2〉 = 1 − m2. Thus we obtain the ratio

〈
(ΔhW)2〉

h2
W

= 1

Zn

(
1

m2 − 1

)
, (10.7)
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which is of O(1/Zn) as long as m is not too close to 1, nor to 0. This is the case if
either the nonzero external field of h ∼ O(Tc) is present in the paramagnetic phase,
or 1 − T/Tc ∼ O(1) in the ordered phase. In the case of m2 < 1/Zn, however, the
fluctuation becomes significant.

By imposing the self-consistency of thermal fluctuations, the improved MFA
becomes applicable even to the paramagnetic phase with m = 0. As a result, for
instance, the specific heat for T > Tc, which is zero in the simplest MFA, becomes
finite with inclusion of fluctuations. Let us consider the susceptibility which reflects
spin fluctuations in the disordered phase. Assuming that the external field hj may
depend on site j , the magnetization at site i is given in the MFA as

mi = χ0

⎛

⎝hi + J
∑

j∈n(i)
〈σ j 〉

⎞

⎠ . (10.8)

Here χ0 = β is the susceptibility of an isolated spin. If the infinitesimal external
field has the wave number q, the corresponding susceptibility χ(q) = ∂mq/∂hq is
given in the MFA by

χMFA(q) = χ0

1 − Jqχ0
, (10.9)

where Jq in the hypercubic lattice is given by

Jq = 2J
d∑

i=1

cos qi. (10.10)

The homogeneous susceptibility χMFA(q = 0) is divergent at the Curie temperature.
We note that the simplest MFA does not satisfy the basic consistency relation

between response and fluctuation. Namely, the local susceptibility, which is given by
the q-average of χ(q), should be equal to χ0 for any value of J . This is the special
property of the Ising model that comes from conservation of each spin σi . In the
MFA, however, the LHS in Eq. (10.9) does not give χ0 on average. The reason for
this inconsistency is traced to the overcounting in hW as the effective field acting on
the given spin. Namely, hW includes a part contributed by the given spin itself. This
part, which is called the reaction field, should be removed in considering the action
on the given spin. The reaction field must be proportional to the local magnetization,
and is written as −λm. The corrected field hW − λm is called the cavity field. The
inhomogeneous magnetization mq under the external field hq is now given by

mq = χqhq = χ0
[
hq + (

Jq − λ
)
mq

]
, (10.11)
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which gives

χq = χ0

1 + (
λ − Jq

)
χ0

, (10.12)

or

χ−1
q = χ−1

0 + λ − Jq ≡ χ̄−1
0 − Jq . (10.13)

Here χ̄0 is called the irreducible susceptibility which includes the local field
correction in terms of λ. From the self-consistency condition, the q-average of χq

must be equal to the local susceptibility χ0, which leads to the relation:

1 = 1

N

∑

q

1

1 + (
λ − Jq

)
χ0

, (10.14)

where N is the total number of lattice sites, being equal to the number of q inside
the Brillouin zone. Equation (10.14) determines λ self-consistently.

Because of its nature of correcting the molecular field, the reaction field has a
tendency to suppress the transition temperature below the mean field value. In the
extreme example in which the exchange interaction is independent of q as given by
Jq = J0, Eq. (10.14) demands that λ = J0. Then we obtain finite χq (= χ0) for any
finite T . This is in strong contrast with the mean field results giving Tc = J0.

Another contrast with the ordinary MFA is that Tc becomes zero in one- and
two-dimensional systems. This is because Eq. (10.14) is never satisfied with finite
Tc. To see this, we assume certain finite Tc, which leads to Tc + λ − Jq ∝ q2.
Then integration over q gives divergence in the form q−1

c (d = 1) or ln qc (d =
2) where qc = L−1 → 0 is the lower cut-off determined by the size L of the
system. The result for d = 1 is qualitatively correct, but that in d = 2 is different
from the exact solution [1]. Thus the correction to the MFA in d = 2 is too much.
As d increases beyond 2, it improves the original MFA in a reasonable way. It is
possible to interpret the reaction field as incorporating the mode-coupling effect of
fluctuations with different wave numbers.

10.2 Dynamical Effective Fields

The effective Hamiltonian for the Ising model takes the single-site form in the MFA.
Furthermore the local feature remains after with inclusion of the reaction field.
We shall now turn to electrons with strong local correlations. At a given site, the
effect of other sites is represented by a local effective field which is now dynamical.
Such extension keeping the local nature is called the dynamical mean field theory
(DMFT). An important feature distinct from the Hartree–Fock theory is that the
self-consistency is imposed on each energy of the Green function. Among the vast
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literature of relevant papers, we recommend the extensive review [2] including the
historical background and basic ideas. The DMFT turns out very useful for studying
dynamical as well as thermodynamic properties of quantum particles with strong
local correlation. For simplicity, we confine the discussion in this chapter to the
paramagnetic phase.

To be specific, we take the Hubbard model

H =
∑

kσ

εkc
†
kσ ckσ + U

∑

i

c
†
i↑ci↑c

†
i↓ci↓, (10.15)

where the energy spectrum εk is the Fourier transform of tij as given by

εk =
∑

i

tij exp
(−ik · Rij

)
, (10.16)

with vectors for the lattice sites Rij ≡ Ri − Rj . The on-site interaction (U ) term
has been written in the site representation.

As the crucial feature with large number Zn of neighbors, we show the
dominance of the site-diagonal part of the Green function. We first take the free
fermions, and derive the upper bound of the off-diagonal part of the Green function.
In the momentum space, the Green function gk[τ ] = −〈Tτ ckσ (τ )c

†
kσ
(0)〉0 is

obtained explicitly as

gk[τ ] =
{− [1 − f (εk)] exp (−εkτ) , (τ > 0)
f (εk) exp (−εkτ) , (τ < 0),

(10.17)

which is real and bounded as

− 1 ≤ gk[τ ] ≤ 1, (10.18)

for any value of τ . We have used the notation gk[τ ] with angular bracket to
distinguish the object from the Green function gk(z) in the energy (z) domain.
Similar notation has been used in Eq. (3.45). By Fourier transform to the real space,
we obtain the site representation of the Green function

gij [τ ] = −
〈
Tτ ciσ (τ )c

†
jσ (0)

〉

0
= 1

N

∑

k

gk[τ ] exp
(
ik · Rij

)
. (10.19)

By the inverse Fourier transform we obtain

gk[τ ]2 =
∑

j l

gij [τ ]gli[τ ] exp
(
ik · Rj l

)
, (10.20)
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where only terms with j = l remain after the summation over k. Using the property
gji = g∗

ij , which follows from gk being real, we obtain the inequality:

1

N

∑

k

gk[τ ]2 =
∑

j

∣∣gij [τ ]∣∣2 ≤ 1. (10.21)

If there are Zn equivalent sites j as seen from i, we obtain |gij [τ ]| ∼ O(1/
√
Zn).

On the other hand, the diagonal element gii[τ ] has the order of unity. Thus the off-
diagonal elements are small for large Zn. In this way the thermodynamics is derived
in a controlled manner with large Zn. However, in dynamics, the 1/Zn classification
requires more care. Namely, as seen from the divergence at z = εk of the Green
function g(k, z) = (z − εk)

−1, the k-dependence cannot be neglected in dynamics.
Hence selection of Feynman diagrams according to the 1/Zn classification requires
partial inclusion of higher order processes. This means possible relevance of off-
diagonal elements gij (z) in dynamics.

We now extend the inequality given by Eq. (10.21) to the Green function of
interacting systems. We use the representation:

G[k, τ ] =
∫ ∞

−∞
dερ(k, ε)gε[τ ], (10.22)

where ρ(k, ε) is the spectral function and

gε[τ ] = e−τε {−θ(τ )[1 − f (ε)] + θ(−τ)f (ε)} . (10.23)

With use of the sum rule Eq. (3.103) for ρ(k, ε), we obtain

|G[k, τ ]| ≤
∫ ∞

−∞
dερ(k, ε) |gε[τ ]| ≤ 1 (10.24)

because |gε[τ ]| ≤ 1. Hence we have generalized Eq. (10.18), and further generaliza-
tion of Eq. (10.21) for Gij is straightforward. Namely, the magnitude of off-diagonal
elements Gij [τ ] is smaller by O(1/

√
Zn) as compared with the diagonal element.

We proceed to discuss the self-energy for large Zn [2, 3]. Figure 10.1 shows
the simplest Feynman diagrams which contribute to the off-diagonal elements in

i j i j

Fig. 10.1 Lowest-order processes for the off-diagonal elements Σij of the self-energy
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the lowest order. Since both diagrams have three off-diagonal elements Gij , the

upper bound of Σij [τ ] is O(Z
−3/2
n ). Account of higher order self-energies does

not change the order estimate. Thus any off-diagonal element Σij [τ ] of the self-

energy is smaller by O(Z
−3/2
n ) as compared with the diagonal element. Note that

this argument does not depend on temperature and energy scales. If a theory is free
from approximations other than neglecting the k-dependence of the self-energy, the
theory becomes exact in the limit of Zn → ∞, or in infinite dimensions. The DMFT
has precisely this feature.

The Green function in the DMFT is thus given by

G(k, z) = [z − εk − Σ(z)]−1, (10.25)

with neglect of k-dependence of the self-energy [2, 3]. The site-diagonal part Ḡ(z)

of the Green function is related to G(k, z) as

(i) Ḡ(z) = 1

N

∑

k

1

z − εk − Σ(z)
=
∫ ∞

−∞
dε

ρ(ε)

z − Σ(z) − ε

= g(z − Σ(z)), (10.26)

where N is the total number of lattice sites, and g(z) is the local Green function in
the non-interacting system. For simple form of the density of state ρ(ε), integration
over ε can be performed analytically. Some examples will be discussed later.
Equation (10.26) is the first of the DMFT equations.

In order to derive Ḡ(z) as the solution of the effective impurity problem, we
introduce the cavity Green function G(z) ≡ [z− λ(z)]−1 which serves as the zeroth
order Green function for the effective impurity. Namely, G(z) includes the effect of
effective medium, while it has not included the effect of U at the impurity site. The
latter should be included as the self-energy. Thus we obtain the second equation of
the DMFT:

(ii) Ḡ(z) =
[
G(z)−1 − Σ(z)

]−1 = [z − λ(z) − Σ(z)]−1 . (10.27)

Because of the translational invariance of the lattice system, the self-energy Σ(z)

should be common to the impurity and the medium. Figure 10.2 illustrates the steps
to replace the lattice system to the effective impurity.

The two relations set by Eqs. (10.26) and (10.27) are not yet sufficient to
determine the Green function, since we have three unknowns λ(z),Σ(z), Ḡ(z) for
given z. By solving the effective impurity problem explicitly, we obtain another
relation between λ(z) and Σ(z). Namely, the DMFT is completed in the following
third step:

(iii) By solving the effective impurity problem, Ḡ(z) is derived
in terms of λ(z) and U.
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Fig. 10.2 Construction of the effective impurity problem. The original lattice (a) is simulated by
an effective medium characterized by λ(z) as shown in (b). The local interaction in the impurity
system is accounted for by the self-energy Σ(z) as shown in (c)

Any method can be used in the step (iii), which is called the impurity solver. In the
Hubbard model, and in more complicated models, one employs mostly numerical
methods as the impurity solver.

As seen in Eq. (10.26), once we know g(z) for a given lattice, the renormalized
Green function is obtained by the replacement: z → z−Σ(z). The density of states
ρ(ε) determines g(z) by the spectral integral, which is equivalent to the Hilbert
transform. We now discuss representative results for g(z) and ρ(ε), assuming the
nearest-neighbor hopping. Let us first consider the generalized cubic lattice in large
spatial dimensions d with the hopping parameter −t (<0). The spectrum is given
by

εk = −2t
d∑

i=1

cos ki ≡
d∑

i=1

εi, (10.28)

with the lattice constant unity. Writing the momentum average as 〈〈· · · 〉〉, we obtain

〈〈εk〉〉 = 〈〈εi〉〉 = 0, (10.29)

〈〈
ε2
k

〉〉
=

d∑

i=1

〈〈
ε2
i

〉〉
= t2d ≡ D2

G. (10.30)

If one fixes the magnitude of t , and makes d larger, both the bandwidth 4td and
the variance D2

G diverge. On the other hand, if one lets d larger while keeping the
D2

G = t2d fixed, the resultant density of states tends to the Gaussian form [4]

ρG(ε) = 1√
2πDG

exp

(
− ε2

2D2
G

)
. (10.31)

with finite width DG. Although the band tails extend to ε = ±∞, the main weight
of the density of states is concentrated in the finite energy range of O(DG). Thus
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physical quantities such as free energy remain finite with the Gaussian density of
states.

The emergence of the Gaussian distribution corresponds to the central limit
theorem in probability theory, which can be proved most concisely with use of the
generating function:

M(x) ≡
∫ ∞

−∞
dερ(ε)e−iεx = 〈〈exp(−iεkx)〉〉. (10.32)

In terms of the moments μn ≡ 〈〈εni 〉〉, which is the same for all i, we obtain

M(x) =
(

1 − 1

2
x2μ2 + 1

4!x
4μ4 + · · ·

)d

→
d→∞ exp

(
−1

2
x2D2

G

)
, (10.33)

where odd moments all vanish because εi is an even function of ki . Thus inverse
Fourier transform gives Eq. (10.31). More details of the derivation is the subject
of Problem 10.1. The real part of the Green function is obtained by the Hilbert
transform of the Gaussian as

DG Re ḡ (ε + i0+) = √
2e−x2/2

∫ x/
√

2

0
dy ey

2 = √
2D

(
x/

√
2
)
, (10.34)

with x = ε/DG. Here D(y) is known as the Dawson function:

D(y) ≡ e−y2
∫ y

0
du eu

2 = 2√
π
e−y2

erfi(y), (10.35)

with erfi(y) ≡ −i erf(iy) being the imaginary error function. Figure 10.3a shows
the real and imaginary parts of ḡ(ε + i0+). Derivation of Eq. (10.34) is the subject
of Problem 10.2.

Fig. 10.3 Real and imaginary parts of the Green function ḡ(ε + i0+) for (a) Gaussian and (b)
semi-elliptic density of states. The unit of energy is taken to be the respective bandwidth parameter
DG or DB
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Another useful density of states is given by

ρB(ε) = 2

πDB

√

1 −
(

ε

DB

)2

, (10.36)

for |ε| ≤ DB, and zero otherwise. This semi-elliptic density of states emerges if
one considers a hypothetical lattice which has no connected path to return to the
original site without retracing, and takes the limit Zn � 1 in the lattice. The lattice
without such loop is called the Bethe lattice or the Cayley tree. Let us consider
the homogeneous Bethe lattice with the nearest-neighbor hopping −t . An electron
situated at the origin can hop to one of the Zn neighbors, then the electron may
either return to the origin or hop to one of the Zn − 1 neighbors other than the
origin. Thus the site-diagonal part ḡ(z) of the Green function of non-interacting
electrons satisfies the relation

ḡ(z) = 1

z − t2Zng̃(z)
, (10.37)

where g̃(z) is the modified site-diagonal Green function which excludes hopping to
the origin. The term with g̃(z) acts as a self-energy to the bare Green function 1/z.
If one takes the limit Zn � 1 keeping t2Zn ≡ 4DB fixed, the difference between
ḡ(z) and g̃(z) becomes negligible. Hence from Eq. (10.37) we obtain the quadratic
equation for ḡ(z) with the solution

ḡ(z) = 2

D2
B

(
z − i

√
D2

B − z2

)
, (10.38)

where the branch of the square root should be chosen so that ḡ(z) tends to 1/z with
|z|/DB � 1. The semi-elliptic density of states given by Eq. (10.36) corresponds to
−π−1Imḡ(ε + i0+). Figure 10.3b shows the real and imaginary parts of ḡ(ε + i0+)
for the Bethe lattice.

Let us now turn to a simpler model with a local interaction where the DMFT step
(iii) in p.242 can be carried out easily [5]. The model is given by

HFK =
∑

ij

tij c
†
i cj +

∑

i

εf f
†
i fi + U

∑

i

f
†
i fic

†
i ci , (10.39)

which is called the Falicov–Kimball (FK) model. The FK model is obtained from
the Hubbard model by setting tij = 0 only for down-spin electrons, and shift their
energy to εf . The spin-up electrons are rewritten as spinless c-electrons, while spin-
down electrons as spinless f electrons. Because of the absence of hopping, the f -
electron number nf is conserved at each site. In terms of the cavity Green function
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G(z) = [z − λ(z)]−1 for c-electrons, Ḡ(z) is written as

Ḡ(z) = 1 − nf

z − λ(z)
+ nf

z − λ(z) − U
, (10.40)

which takes exact account of U . Thus the step (iii) has been performed immediately.
We proceed to derive λ(z) and Σ(z) by taking the Lorentzian density of states:

ρ(ε) = 1

π

DL

ε2 + D2
L

= − 1

π
Imḡ (ε + i0+) , (10.41)

with ḡ(z) = (z+ iDL)
−1. Although the Lorentzian form is hardly realized in actual

lattices, this form is useful for obtaining nontrivial results analytically. With a little
manipulation through steps (i) and (ii), we obtain λ(z) = −iDL with Im z > 0.
This independence of λ(z) on z results in the simplifying relation: G(z) = ḡ(z). The
resultant Ḡ(z) gives the self-energy in the closed form:

Σ(z) = Unf + U2nf
(
1 − nf

)

z + iDL − U
(
1 − nf

) . (10.42)

The first term Unf in the RHS corresponds to the Hartree–Fock (or the simplest
MFA) result, which becomes dominant for large |z|. In the opposite case of U �
|z|,DL, the second term tends to cancel the first term, making Σ(z) ∼ [nf /(1 −
nf )](z + iDL). The second term thus corrects the MFA like the reaction field in the
Ising model. Details of deriving Eq. (10.42) is the subject of Problem 10.3.

10.3 Variational Principle and Optimum Effective Field

The fundamental DMFT equations (i) and (ii), given in Eqs. (10.26) and (10.27), are
not only intuitively appealing, but are also based on the variational principle [6, 7].
We shall apply the argument in Sect. 9.4 and derive (i) and (ii). The starting point
is Eq. (9.49) which represents Ω as a functional of the Green function. We shall
show near the end of this section that the functional Φ{G} in Sect. 9.4 is actually
determined by the site-diagonal element Ḡ in the limit of many neighboring sites.
The self-energy is independent of the momentum in the same limit. The stationary
condition δΩ = 0 is equally valid no matter whether we vary G or Σ , as long as
we keep the relation G−1 = g−1 − Σ . In Eq. (9.49), it is convenient to regard

βΦ{Ḡ} − Tr(ΣḠ) ≡ βΨ (Σ) (10.43)

as a Legendre transformation to change the natural variable to Σ .
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We regard the cavity Green function G(z) or, equivalently, λ(z) as the reference
for the effective impurity. Correspondingly, the renormalized Green function with
account of U is written as Dλ(z) ≡ [z − λ(z) − Σλ(z)]−1 where the λ-dependence
of the self-energy is emphasized. The thermodynamic potential Ωλ of the impurity
is then given, in accordance with Eq. (9.49), by

β[Ωλ − Ω0(G)] = Ψ (Σλ) − Tr lnD−1
λ G, (10.44)

where Ω0(G) is for the reference state. The crucial observation is that Ψ (Σλ) has
the same functional form as the original Ψ (Σ) in Ω , as long as Σ is independent of
the momentum. Hence we can eliminate Ψ to write [7]

βΩ (Σλ) = βΩλ (Σλ) + Tr ln
(
G−1 − Σλ

)
− Tr ln

(
g−1 − Σλ

)
. (10.45)

We consider varying Σλ with λ(z) fixed at some trial value. Although Ωλ is
stationary against variation by construction, Ω(Σλ) is not so in general because
the optimum self-energy for Ω is different from Σλ for this choice of λ(z). With
correct choice of λ(z), on the other hand, we obtain Σλ = Σ which realizes not
only δΩλ/δΣλ = 0 but also δΩ/δΣλ = 0. In this case the stationary condition
gives Tr(Dλ − G)δΣλ = 0 or, equivalently,

Dλ(z) = 1

z − λ(z) − Σ(z)
= 1

N

∑

k

1

z − εk − Σ(z)
, (10.46)

which combines the first and second DMFT equations given by (10.26) and (10.27).

10.4 Anderson Model as an Effective Impurity

As we have discussed in p.242, the DMFT has the step (iii) to derive Σ(z) for given
λ(z) and U . The effective medium characterized by λ(z) can be simulated by the
Anderson model which has been discussed in Chap. 6 [8]. Using the analyticity of
λ(z) in the upper half plane of z, we employ the spectral representation

λ(z) = εf +
∫ ∞

−∞
dε

η(ε)

z − ε
, (10.47)

where εf corresponds to the local electron level. The spectral function is simulated
in terms of the hybridization parameter V and the energy εc(k) of hypothetical
conduction band as

η(ε) = V 2

N

∑

k

δ [ε − εc(k)] . (10.48)
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Thus a hypothetical Anderson Hamiltonian HA is specified in terms of εf , V , and
εc(k). We take the one-dimensional model for εc(k).

In the Hubbard model with realistic density of states, an insulating state with
antiferromagnetism can be realized as the ground state with unit occupation per site.
The antiferromagnetism disappears with increasing temperature, but an insulating
paramagnetic state may persist. This is a typical situation of Mott insulators. In low-
dimensional systems, on the other hand, the insulating state may remain down to
zero temperature. We have discussed such cases in Sect. 7.8 for one-dimensional
systems. In the Mott paramagnetic state toward zero temperature, the spin entropy
is actually removed by intersite spin correlations. If there are competing interactions
between the spins, any magnetic order may be prevented even in higher dimensional
case, but the entropy is removed by correlations. In such situations, the DMFT has a
serious difficulty in describing the low temperature state. Namely, within the DMFT
framework, a finite amount of entropy remains in the insulating ground state. Thus
although the DMFT is powerful in dealing with strong local correlations, it loses
the power if the dominant intersite correlations are beyond the mean field theory.
In order to remedy the defect by including intersite correlations more accurately,
various approaches have been tried either from the real space [9], or from the
momentum space [10].

On the other hand, the DMFT has no difficulty of entropy in the metallic ground
state, which is realized in the presence of a substantial band tail. In the following we
confine the discussion to the metallic ground state without a long-range order such
as magnetism and superconductivity. In the special case where the density of states
ρ(ε) of the Hubbard model has a Lorentzian shape, the step (iii) is much simplified.
Namely, using Eq. (10.26) we obtain

Ḡ(z) = 1

z − ε0 + iDL − Σ(z)
, (10.49)

where the Lorentzian is characterized by the center energy ε0, and the width DL.
This means λ(z) = ε0−iDL. The corresponding Anderson model has the conduction
band with the constant density of states ρc. The relation to the Lorentzian is given
by

V 2ρc = DL. (10.50)

The Anderson model HA with the constant ρc can be solved exactly by use of
the Bethe ansatz [11]. The absence of the cut-off in the hypothetical conduction
band is obviously unrealistic. However, this does not cause a further mathematical
trouble since the natural cut-off for the many-body effect is provided by U . Hence
the bandwidth much larger than U does not influence the solution. Although we
do not go into details, exact thermodynamics has been derived for arbitrary set of
(DL, U) in the Anderson model [11].

On the basis of knowledge about the impurity Anderson model, we now discuss
the dynamical property of the Hubbard model in infinite dimensions. The ground
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state with the Lorentzian density of states is a Fermi liquid, which derives from
the local Fermi liquid property in the effective impurity model. We expand Σ(z) in
Eq. (10.49) as

Σ(z) = Σ(0) − αz + O
(
z2
)
, (10.51)

where both Σ(0) and α are real in the Fermi liquid. Then the local Green function
for small |z| is arranged in the form

Ḡ(z) ∼ 1

(1 + α)z − ε0 + iDL − Σ(0)
≡ a

z − a [ε0 − iDL − Σ(0)]
, (10.52)

where a = (1 + α)−1 is the renormalization factor, which is smaller than unity.
Similar calculation has been done around Eq. (6.74). Using Eq. (10.52) we obtain
the renormalized density of states ρR(ε) near the Fermi level in the Hubbard model
as

ρR(ε) ≡ − 1

π
ImḠ(ε + i0+) ∼ a

π

aDL

(ε − aε̃0)
2 + (aDL)

2
(10.53)

with ε̃0 = ε0 +Σ(0). The energy shift is estimated as Σ(0) ∼ Un/2 in the Hartree–
Fock approximation, with n being the occupation number per site. We should have
ε̃0 = 0 for n = 1 because of the particle–hole symmetry. Namely, the fully occupied
state with n = 2 and the vacant state n = 0 turn into each other by the particle–hole
transformation, which corresponds to the sign change of the energy level. The state
with n = 1 turns into itself by the transformation. Hence the energy level must be
zero. Note that occupation number per spin is 1/2.

The width of ρR(ε) has been reduced by the factor a as compared with the non-
interacting value DL. Accordingly, the renormalized center energy aε̃0 comes closer
to the Fermi level for n 	= 1. On the contrary, in the density of states at ε = 0, the
renormalization factor cancels each other in the numerator and the denominator,
resulting in πρR(0) = DL/[ε̃2

0 + D2
L]. In the special case n = 1 with ε̃0 = 0, one

obtains πρR(0) = 1/DL independent of U . In other words, the density of states at
the Fermi level is the same as the non-interacting one. Remarkably, ρR(0) can be
evaluated exactly for any occupation n with the help of the Friedel sum rule. As
discussed in Problem 10.4, the Fermi liquid constraint leads to

ρR(0) = 1

πDL
sin2

(π
2
n
)
. (10.54)

In the energy range far from the Fermi level, we can no longer use the
approximate form given by Eq. (10.53). A complementary route is to start from the
Green function

Ḡ(z) ∼ 1 − n/2

z − ε0
+ n/2

z − ε0 − U
, (10.55)
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Fig. 10.4 Illustration of the renormalized density of states in the infinite-dimensional Hubbard
model with n = 1. The central peak derives from quasi-particles in the Fermi liquid, while the two
side peaks derive from the correlation in the atomic limit

which is relevant in the strong-coupling case. Because of the finite hopping in the
Hubbard model, Ḡ(ε + i0+) with ε ∼ ε0 and ε0 + U should acquire the imaginary
part of the order of 1/DL. Thus, together with the one given by Eq. (10.53),
there appear three peaks in the renormalized density of states ρR(ε). Figure 10.4
illustrates the situation. Since each numerator in Eq. (10.55) becomes about 1/2 for
n = 1, the magnitude of ρR(ε) at each peak is about half of that given by Eq. (10.54).
In the extreme case of U � DL, the width of the central peak is of the order of
Kondo temperature TK with

TK ∼ U exp

(
− U

8DL

)
, (10.56)

by reference to Eq. (6.18) with the replacement D → U . In this case the
renormalization factor is very small: a = TK/DL � 1. In actual transition metal
systems for which the Hubbard model is commonly used, it is rare to have such
combination for magnitudes of the Coulomb repulsion and the bandwidth. In rare-
earth systems, on the other hand, the situation corresponding to the extreme case is
often realized as discussed in the next section.

10.5 Heavy Electrons

According to the Fermi liquid theory, the specific heat at low temperature is
determined by the density of states ρ∗(μ) at the Fermi level μ of quasi-particles, as
shown in Eq. (4.16). With a given density of electrons, ρ∗(μ) is proportional to the
effective mass m∗ as given by Eq. (4.5). It has been found in a number of f -electron
systems such as metallic rare-earth and actinide compounds that the specific heat
coefficient γ is more than 100 times of that in simple metals such as Al and Cu.
It shows the presence of electrons with very large effective mass, which are called
heavy electrons, or heavy fermions.
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The Hubbard model is not sufficient to understand f -electron systems. In each
rare-earth ion, 4f electrons are located inside the dominant amplitudes of 5d and
6s wave functions so that 4f wave functions keep the strong local character as in
isolated atoms. On the other hand, broad energy bands originating from 5d, 6s and
surrounding ligand orbitals can partially hybridize with 4f states. Similar situation
arises for 5f electrons in actinide systems. The local character of 5f electrons is
weaker than the 4f case because of the larger spatial extent. If the relevant energy
level εf is close to the Fermi level, the hybridization causes fluctuating occupation
number of f electrons. In such a case, f electrons acquire a partially itinerant
character. Correspondingly the average occupation deviates from an integer. This
phenomenon is called valence fluctuation since the f occupation number is related
to valence of the ion. Note that valence fluctuation accompanies spin fluctuations in
addition to charge fluctuations. As the f -electron level goes away from the Fermi
level, charge fluctuations become less important. However, the spin fluctuations can
remain significant, and causes the Kondo effect at each site.

To simulate the situation described above, we consider the Anderson lattice
which consists of the periodic arrangement of impurity Anderson models. The
Hamiltonian HAL is given by

HAL =
∑

kσ

εkc
†
kσ ckσ + V

∑

kσ

(
c

†
kσ fkσ + Vf

†
kσ ckσ

)

+
∑

iσ

(
εf + 1

2
Un

f
iσ̄

)
n
f
iσ , (10.57)

where n
f
iσ = f

†
iσ fiσ is the number operator of f electrons at site i and spin σ , with

σ̄ = −σ . The operator fkσ represents the Fourier transform of fiσ .
In the impurity Anderson model, we have learned in Sect. 10.4 that the renor-

malization factor a, given by a ∼ TK/V
2ρc, can be very small if U � V 2ρc. In

f electron systems, this situation is often realized in actual systems. Hence if f

electrons become itinerant by hybridization, we obtain the estimate

m∗/m ∼ V 2ρc/TK � 1. (10.58)

In this way, emergence of heavy electrons in f electrons is understood in terms of
the Kondo effect. On the other hand, the origin of heavy mass in d-electron systems
such as LiV2O4 seems different, and frustrated intersite interactions should play
an important role [12, 13]. The heavy electrons show up not only as paramagnetic
metals but also as superconducting state, which was first found in CeCu2Si2 [14].
Here we restrict ourselves to the paramagnetic state and sketch the DMFT for the
Anderson lattice.
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Let us begin with the U = 0 case which can be easily solved. The Hamiltonian
is simply diagonalized by taking the Bloch states for both c and f electrons. The
eigenvalues E±(k) are the solution of

det

(
E − εk −V

−V E − εf

)
≡ det ĝ(k, E)−1 = 0, (10.59)

with the result

E±(k) = 1

2

(
εk + εf

)± 1

2

√(
εk − εf

)2 + 4V 2. (10.60)

The two bands result from hybridization of the conduction band with energy εk and
the flat band deriving from f -states. Each band accommodates up to two electrons
per site with the spin degeneracy. Hence if the total electron number n is equal to
2, the ground state can be an insulator with the lower band completely filled. The
details of this insulating state is discussed in the next section. In this section we
assume a metallic ground state. Namely, the electron number per site should be
a non-integer. In actual systems, presence of other conduction bands, is a source
of non-integer number in the Anderson lattice. However, these bands are often not
included explicitly in the model.

The Green function with U = 0 is easily obtained as the matrix ĝ(k, z) which
has appeared in Eq. (10.59). The f -electron component is given by

gf (k, z) =
(
z − εf − V 2

z − εk

)−1

. (10.61)

The DMFT concentrates on the site-diagonal part Ḡf (z) of the renormalized f -
electron Green function, which is given by

Ḡf (z) = 1

N

∑

k

1

z − εf − Σf (z) − V 2/ (z − εk)

= [
z − εf − λf (z) − Σf (z)

]−1
, (10.62)

where the self-energy Σf (z) accounts for the interaction effect, and λf (z) char-
acterizes the cavity Green function. Following Eq. (10.47) we employ the spectral
resolution as

λf (z) = Δεf +
∫ ∞

−∞
dε

ηf (ε)

z − ε
. (10.63)
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Thus we define another hypothetical impurity Anderson model by

ηf (ε) = Ṽ 2

N

∑

k

δ
[
ε − ε̃c(k)

]
. (10.64)

The ingredients for the hypothetical impurity is the spectrum ε̃c(k) of the conduction
band, fictitious hybridization Ṽ , and the local level ε∗

f = εf +Δεf . The structure of
ηf (ε) is more complicated than that in the Hubbard model. Since a set of parameters
that allows analytic solution is difficult to find, one has to resort to numerical
methods in most cases.

The standard process of solution with a proper impurity solver goes as follows.
Suppose we can derive the self-energy Σf (z) for system parameters associated with
a trial λf (z). Substitution of the resultant Σf (z) into the first line of Eq. (10.62)
defines a new λf (z) in the second line, which is in general different from the initial
one. If they agree, the self-consistent solution is obtained. Otherwise, one iterates
derivation of Σf (z) using a new λf (z) until the convergence is achieved.

10.6 Kondo Insulators

In the Anderson lattice, charge fluctuations are suppressed with large U , and both
εf and εf +U far from the Fermi level. Then f electrons are left with only the spin
degrees of freedom at each site. This is the same situation with the impurity case
when we have introduced the Kondo model in Sect. 6.1. The periodic lattice of such
Kondo centers is called the Kondo lattice. The Hamiltonian is given by

HKL =
∑

kσ

εkc
†
kσ ckσ + J

∑

i

Si · sc
i , (10.65)

where each site i accommodates a localized spin Si and a conduction-electron spin
sc
i . The latter consists of conduction electrons as

sc
i = 1

2

∑

σσ ′
c

†
iσσ σσ ′ciσ ′ ,

where ciσ is the Fourier transform of ckσ . With i at the origin, the same quantity is
given by Eq. (6.11) in terms of c†

kσ and ck′σ ′ .
Since the f -electrons in the Kondo lattice do not have the charge degrees of

freedom, the f -electron Green function cannot be defined properly. However, an
approach like the DMFT should be still applicable if we use the T -matrix of
conduction electrons instead of the f -electron Green function. Namely, we can
assume that the T -matrix is dominated by the site-diagonal element. As the main
topic in this section, we shall show that the ground state is insulating if the number
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of conduction electron is one per site. At first sight this result looks contradicting
to the energy band theory, which demands that the partially filled conduction band
leads to the metallic ground state. As a continuation of the Anderson lattice, on
the other hand, the insulating ground state is reasonable since the sum of f - and
conduction electrons adds up to two per site. In contrast to ordinary band insulators,
the band gap in the Kondo lattice depends strongly on temperature T , and vanishes
for T � TK. Such insulating state is called the Kondo insulator. In contrast to the
Mott insulating state, the DMFT has no difficulty in describing the Kondo insulator
where the spin entropy vanishes by the local correlation due to Kondo effect.

We focus on the T -matrix t (z) of conduction electrons at each site, which is
reduced to V 2Ḡf (z) in the Anderson lattice as given by Eq. (10.62). In the DMFT,
Ḡf (z) is simulated by the effective Anderson impurity, where the ground state is
the local Fermi liquid. According to the argument in Sect. 6.6, the impurity Green
function Gf (z) at T = 0 near the Fermi level is parameterized as

Gf (z) = af

z − ε̃f + iΔ̃
, (10.66)

where the renormalization factor af relates the renormalized width Δ̃ to the bare
one Δ = πV 2ρc by Δ̃ = afΔ ∼ TK. Then the T -matrix takes the following form

t (z) = 1

πρc
· Δ̃

z − ε̃f + iΔ̃
. (10.67)

Note that the scattering strength Δ̃ is the same as the width of the resonance. This
is consistent with the relation

Im t (0) = −πρc|t (0)|2, (10.68)

and is equivalent to the unitarity of the S-matrix as discussed around Eq. (6.24).
The T -matrix given by Eq. (10.67) with the condition nf = 1, namely ε̃f = 0, is
applicable to the Kondo lattice. Note that Kondo effect makes up the T -matrix of
the resonance type, even without charge degrees of freedom in localized spins. We
simply assume Eq. (10.67) as a reasonable final form without following the self-
consistent loop of the DMFT.

The self-energy Σc(z) of conduction electrons in the Kondo lattice is obtained
from the T -matrix by using the relation

t (z) = Σc(z) + Σc(z)gc(z)t (z), (10.69)

with gc(z) the site-diagonal part of the free Green function. If the conduction band
is symmetric about the Fermi level, we may approximate gc(z) ∼ −iπρc for the
energy range much smaller than the bandwidth. The real part vanishes as a result of
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momentum average for the symmetric density of states. Then we obtain

Σc(z)
−1 = t (z)−1 − iπρc = z/Ṽ 2, (10.70)

with Ṽ defined by the relation Δ̃ = πṼ 2ρc. Note that Σc(z) does not have an
imaginary part for real z, as a consequence of the unitarity constraint Eq. (10.68).
The renormalized Green function Gc(k, z) is related to the bare one gc(k, z) through
the Dyson equation

Gc(k, z)
−1 = gc(k, z)

−1 − Σc(z) = z − εk − Ṽ 2/z. (10.71)

This Green function behaves as if each site had a localized f -electron level at the
Fermi level, even though there is no charge degrees of freedom for f -electrons. The
renormalized spectrum in this case is derived as

E±(k) = 1

2

(
εk ±

√
ε2
k + 4Ṽ 2

)
, (10.72)

in the same way as Eq. (10.60). Figure 10.5 illustrates the resultant spectrum. Since
the Fermi level is zero, a completely filled band emerges corresponding to E−(k).

According to the energy band theory, there must be two electrons per site to have
a completely filled band. However, we have only one electron per site. How can we
resolve this paradox? The resolution comes from the quasi-particle weight of the
spectrum. Namely, we rewrite the Green function as

Gc(k, z) = a−(k)
z − E−(k)

+ a+(k)
z − E+(k)

, (10.73)

Fig. 10.5 Schematic energy
spectrum of conduction
electrons in the Kondo lattice.
The spectrum depends on k

only through the bare energy
εk which is taken in the
horizontal axis. The Fermi
level is located at the zero
energy

E−(k)

E+(k)

εk

E±(k)

0
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Fig. 10.6 Weight of
quasi-particles in hybridized
conduction bands

where the weights a±(k) are given by

a±(k) = 1

2

⎛

⎝1 ± εk√
ε2
k + 4Ṽ 2

⎞

⎠ . (10.74)

Figure 10.6 shows the weights for both branches. It is clear from Eq. (10.74) that the
sum rule a+(k)+a−(k) = 1 holds for each momentum. Namely, the total weight of
the spectrum is the same as that of a single band, although there are two branches.
With the symmetric weight above and below the Fermi level, the occupation number
per site of conduction electrons is given by

2

N

∑

k

a−(k) = 1, (10.75)

with the spin multiplicity 2. In the quasi-particle picture, on the other hand, the
number of filled quasi-particle states is 2 per site, since the weights a± should
be replaced by unity for the Green function of quasi-particles. In this way the
reduced weight in the spectrum resolves the conflict with the energy band theory.
With increasing temperature, the resonance structure given by Eq. (10.67) becomes
obscure, and vanishes for T � TK. Then the system becomes a metal. This is in
strong contrast with ordinary insulators where the energy gap is almost independent
of T .

Problems

10.1 Derive the central limit theorem as expressed by Eq. (10.33).

10.2 Derive the real part of the Green function given by Eq. (10.34) for the Gaussian
density of states.
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10.3 Derive the self-energy of the Falicov–Kimball model in the DFMT as given
by Eq. (10.42).

10.4 Derive the Fermi liquid constraint as given by Eq. (10.54).

Solutions to Problems

Problem 10.1
The lower-order moments are given by 〈〈ε2

i 〉〉 = D2
G/d and 〈〈ε4

i 〉〉 = O(t4) =
O(D4

G/d
2). Other moments are of higher order in 1/d with DG fixed. Hence we

obtain

lnM(x) = d ln

[
1 − 1

d
x2D2

G + O

(
1

d2 x
4D4

G

)]
→

d→∞ −1

2
x2D2

G, (10.76)

which leads to Eq. (10.33).

Problem 10.2
We employ the representation

1

z − ε
= −i

∫ ∞

0
dt exp [i(z − ε)t] , (10.77)

for Im z > 0. With ρG(ε) given by Eq. (10.31), we perform the integral over ε first
to obtain

ḡ(z) = −i
∫ ∞

0
dt exp

(
−1

2
t2 + izt

)
. (10.78)

Next we introduce the dimensionless variable ζ = z/DG, and change the integration
variable from t to y = (ζ + itDG)/

√
2. Then the resulting form is expressed as

DGḡ(z) = −√
2 exp

(
−ζ 2/2

) ∫ i∞

ζ/
√

2
dy exp

(
y2
)
. (10.79)

The integral range is decomposed into

∫ i∞

ζ/
√

2
dy =

∫ i∞

0
dy −

∫ ζ/
√

2

0
dy. (10.80)
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In the case of z → ε+ i0+ with real ε, the first integral contributes a pure imaginary
number to the LHS. Hence we obtain with x = ε/DG

DGReḡ(ε + i0+) = √
2 exp

(
−x2/2

) ∫ x/
√

2

0
dy exp

(
y2
)
, (10.81)

which gives Eq. (10.34).

Problem 10.3
We first derive λ(z). In the case of the Lorentzian density of states for c-electrons,
integration in Eq. (10.26) leads to

Ḡ(z) = 1

z + iΔ − Σ(z)
, (10.82)

with Im z > 0. Hence comparison with Eq. (10.27) gives immediately the result
λ(z) = −iΔ. On the other hand, taking the inverse of Eq. (10.27) and comparing
with Eq. (10.40), we obtain

Σ(z) = z − λ − Ḡ(z)−1 = z − λ − (z − λ)(z − λ − U)

z − λ − (
1 − nf

)
U
. (10.83)

In the rightmost side, we separate the constant term Unf from the other contri-
butions that tend to zero as z goes to infinity. Then putting λ = −iΔ, we obtain
Eq. (10.42).

Problem 10.4
In order to use the Friedel sum rule, we take the Green function Gf (z) of the
effective Anderson model, which is the same as the site-diagonal component Ḡ(z)

in the Hubbard model. Since the self-energy Σ(0) is real at the Fermi level z = 0,
Eq. (10.49) leads to

Im Gf (i0+)−1 = DL = − ∣∣Gf (i0+)
∣∣−2 Im Gf (i0+) (10.84)

with 0+ being positive infinitesimal. From the Friedel sum rule given by Eq. (9.56),
the complex number −Gf (i0+) should have the argument πnf /2. Then we obtain

− Im Gf (i0+) = ∣∣Gf (i0+)
∣∣ sin

(
πnf /2

)
. (10.85)

Comparison of Eqs. (10.84) and (10.85) gives
∣∣Gf (i0+)

∣∣ = sin(πnf /2)/DL. By
identifying Gf = Ḡ and nf = n in the Hubbard model, we obtain Eq. (10.54).
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